In this post, I will demonstrate dynamic remastering of the resources in RAC .
In RAC, every data block is mastered by an instance. Mastering a block simply means that master instance keeps track of the state of the block until the next reconfiguration event .When one instance departs the cluster, the GRD portion of that instance needs
to be redistributed to the surviving nodes. Similarly, when a new instance enters the cluster, the GRD portions of the existing instances must be redistributed to create the GRD portion of the new instance. This is called dynamic resource  reconfiguration.
In addition to dynamic resource reconfiguration, This is called dynamic remastering. The basic idea is to master a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially
keeps track of the number of GCS requests on a per-instance and per-object basis. This means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s
resources to the instance that is accessing the object most. LMON, LMD and LMS processes are responsible for Dynamic remastering.
– Remastering can be triggered as result of
    – Manual remastering
    – Resource affinity
    – Instance crash
– CURRENT SCENARIO -
- 3 node setup
- name of the database – racdb
— SETUP –
– Get data_object_id for scott.emp
SYS>  col owner for a10
           col data_object_id for 9999999
           col object_name for a15
           select owner, data_object_id, object_name
          from dba_objects
          where owner = 'SCOTT'
            and object_name = 'EMP';
OWNER      DATA_OBJECT_ID OBJECT_NAME
———- ————– —————
SCOTT               73181 EMP
 – Get File_id and block_id of emp table
SQL>select empno, dbms_rowid.rowid_relative_fno(rowid),
                 dbms_rowid.rowid_block_number(rowid)
         from scott.emp
          where empno in (7788, 7369);
     EMPNO DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)
———- ———————————— ————————————
      7369                                    4                                  151
      7788                                    4                                  151
– MANUAL REMASTERING –
You can manually remaster an object with oradebug command :
oradebug lkdebug -m pkey <data_object_id>
– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb
                 srvctl start database -d racdb
                 srvctl status database -d racdb
– Issue a select on the object from NODE2
SCOTT@NODE2> select * from  emp;
– Find the GCS resource name to be used in  the query
   x$kjbl.kjblname = resource name in hexadecimal format([id1],[id2],[type]
   x$kjbl.kjblname2 = resource name in decimal format
   Hexname will be used to query resource in V$gc_element and v$dlm_rss views
get_resource_name
SYS@NODE2>col hexname for a25
          col resource_name for a15
           select b.kjblname hexname, b.kjblname2 resource_name,
         b.kjblgrant, b.kjblrole, b.kjblrequest
          from x$le a, x$kjbl b
           where a.le_kjbl=b.kjbllockp
            and a.le_addr = (select le_addr
                              from x$bh
                             where dbablk = 151
                             and obj    = 73181
                            and class  = 1
                              and state   <> 3);
HEXNAME                   RESOURCE_NAME   KJBLGRANT   KJBLROLE KJBLREQUE
————————- ————— ——— ———- ———
[0x97][0x4],[BL]          151,4,BL        KJUSERPR           0 KJUSERNL
– Check the current master of the block –
– Note that current master of scott.emp is node1 (numbering starts from 0)
– Previous master = 32767  is a place holder indicating that prior master
   was not known, meaning first remastering of that object.hat index happened.
   Now the master is 0 which is instance 1.
– REMASTER_CNT = 1 indicating the object has been remastered only once
SYS>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
         from   dba_objects o, v$gcspfmaster_info m
        where o.data_object_id=73181
         and m.data_object_id = 73181 ;
OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—— ————– ————— ————
EMP                 0           32767            1
–  Use following SQL to show master and owner of the block.
 This SQL joins   x$kjbl with x$le to retrieve resource name.
– Note that current master is node1(KJBLMASTER=0) and current owner of the block is
node2(KJBLOWNER = 1)
SYS@NODE2> select kj.kjblname, kj.kjblname2, kj.kjblowner,
kj.kjblmaster
from (select kjblname, kjblname2, kjblowner,
kjblmaster, kjbllockp
from x$kjbl
where kjblname = '[0x97][0x4],[BL]'
) kj, x$le le
where le.le_kjbl = kj.kjbllockp
order by le.le_addr;
KJBLNAME                       KJBLNAME2                       KJBLOWNER  KJBLMASTER
—————————— —————————— ———-  ———-
[0x97][0x4],[BL]               151,4,BL                                1     0
– Manually master the EMP table to node2 –
SYS@NODE2>oradebug lkdebug -m pkey 74625
– Check that the current master of the block has changed to node2 (numbering starts from 0)
– Previous master = 0 (Node1)
– REMASTER_CNT = 2 indicating the object has been remastered twice
SYS>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
        from   dba_objects o, v$gcspfmaster_info m
          where o.data_object_id=74625
           and m.data_object_id = 74625 ;
OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—— ————– ————— ————
EMP                 1               0            2
–  Find master and owner of the block. 
– Note that current owner of the block is Node2 (KJBLOWNER=1)
   from where query was issued)
– current master of the block has been changed to node2 (KJBLMASTER=1)
SYS> select kj.kjblname, kj.kjblname2, kj.kjblowner,
kj.kjblmaster
          from (select kjblname, kjblname2, kjblowner,
kjblmaster, kjbllockp
               from x$kjbl
where kjblname = '[0x97][0x4],[BL]'                     ) kj, x$le le
         where le.le_kjbl = kj.kjbllockp   
        order by le.le_addr;
KJBLNAME                       KJBLNAME2                       KJBLOWNER KJBLMASTER
—————————— —————————— ———-  ———-
[0x97][0x4],[BL]               151,4,BL                                1  1
—————————————————————————————
– REMASTERING DUE TO RESOURCE AFFINITY –


GCS masters a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially keeps track of the number of GCS requests on a per-instance and per-object basis. This
means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s resources to the instance that is accessing the object most.
X$object_policy_statistics maintains the statistics about objects and OPENs
on those objects.LCK0 process maintains these object affinity statistics.
Following parameters affect dynamic remastering due to resource affinity :
_gc_policy_limit : If an instance opens 50 more opens on an object then the other instance (controlled by _gc_policy_limit parameter), then that object is a candidate for remastering. That object is queued and LMD0 reads the queue and
initiates GRD freeze. LMON performs reconfiguration of buffer cache locks working with LMS processes. All these are visible in LMD0/LMON trace files.
_gc_policy_time : It controls how often the queue is checked to see if the remastering must be triggered or not with a default value of 10 minutes.
_gc_policy_minimum: This parameter is defined as “minimum amount of dynamic affinity activity per minute” to be a candidate for remastering. Defaults to 2500 and I think, it is lower in a busy environment.
To disable DRM completely, set _gc_policy_limit and _gc_policy_minimum to much higher value, say 10Million.  Setting the parameter _gc_policy_time to 0 will completely disable DRM, but that also means that you can not manually remaster objects. Further, $object_policy_statistics
is not maintained if DRM is disabled.
— SETUP  –-
SYS>drop table scott.test purge;
    create table scott.test as select * from sh.sales;
    insert into scott.test select * from scott.test;
    commit;
    insert into scott.test select * from scott.test;
    commit;
   insert into scott.test select * from scott.test;
    commit;
    insert into scott.test select * from scott.test;
    commit;
– Get data_object_id for scott.test
SYS> col data_object_id for 9999999
        col object_name for a15
        select owner, data_object_id, object_name, object_id
        from dba_objects
        where owner = 'SCOTT'
          and object_name = 'TEST';
OWNER                          DATA_OBJECT_ID OBJECT_NAME      OBJECT_ID
—————————— ————– ————— ———-
SCOTT                                   74626 TEST                 74626
– Check the initial values of the parameters _gc_policy_minimum and _gc_policy_time
– Enter name of the parameter when prompted
SYS>
SET linesize 235
col Parameter FOR a20
col Instance FOR a10
col Description FOR a40 word_wrapped SELECT a.ksppinm  "Parameter",
      c.ksppstvl "Instance",
       a.ksppdesc "Description"
FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p
WHERE a.indx = b.indx AND a.indx = c.indx
  AND p.name(+) = a.ksppinm
  AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
ORDER BY a.ksppinm; Enter value for parameter: gc_policy
old  11:   AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
new  11:   AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')
Parameter            Instance   Description
——————– ———- —————————————-
_gc_policy_minimum   1500       dynamic object policy minimum activity
                                per minute
_gc_policy_time      10         how often to make object policy
                                decisions in minutes
– Set _gc_policy_minimum and _gc_policy_time to very small values
   so that we can demonstrate remastering
SYS>alter system set "_gc_policy_minimum" = 10 scope=spfile;
         alter system set "_gc_policy_time" = 1 scope=spfile;
– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb
                  srvctl start database -d racdb
                  srvctl status database -d racdb
– Check that parameter values have been changed to the minimum
   allowed by oracle although these values are not the ones we specified
– Enter name of the parameter when prompted
SYS>
SET linesize 235 col Parameter FOR a20 col Instance FOR a10 col Description FOR a40 word_wrapped SELECT a.ksppinm  "Parameter", c.ksppstvl "Instance",       a.ksppdesc "Description"
FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p
WHERE a.indx = b.indx
AND a.indx = c.indx  
AND p.name(+) = a.ksppinm  
AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
ORDER BY a.ksppinm; old 11: AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
new 11: AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')
Enter value for parameter: gc_policy
Parameter            Instance   Description
——————– ———- —————————————-
_gc_policy_minimum   20         dynamic object policy minimum activity
                                per minute
_gc_policy_time      4          how often to make object policy
                                decisions in minutes
- Assign TEST to node1 manually
– Issue a select on  scott.test from node1 –
SYS@NODE1>oradebug lkdebug -m pkey 74626
SCOTT@NODE1>select * from scott.test;
– check the current master of scott.test –
– Note that current master of scott.test is node1 (numbering starts from 0)
– Previous master = 2 (node3)
– REMASTER_CNT = 3 because while I was doing this demonstartion, remastering
   was initated 2 times earlier also.
SYS@NODE1>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
                 from   dba_objects o, v$gcspfmaster_info m
                 where o.data_object_id=74626
                  and m.data_object_id = 74626 ;
OBJECT_NAME     CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
————— ————– ————— ————
TEST                         0               2            3
– Issue an insert statement on scott.test from node3 so that scott.test

will be remastered to node3
SCOTT@NODE3>insert into scott.test select * from test;
– check repeatedly that opens are increasing on scott.test with time
SYS@NODE1>select inst_id, sopens, xopens
          from x$object_policy_statistics
          where object=74626;
 INST_ID     SOPENS     XOPENS
———- ———- ———-
         1       3664          0
SYS@NODE1>/
   INST_ID     SOPENS     XOPENS
———- ———- ———-
         1       7585       1305
            .
            .
            .
SYS@NODE1>/
   INST_ID     SOPENS     XOPENS
———- ———- ———-
         1      12788      17000
SYS@NODE1>/
   INST_ID     SOPENS     XOPENS
———- ———- ———-
         1      35052      39297
– check repeatedly if remastering has been initiated –

– Note that  after some time
    . current master changes from node1CURRENT_MASTER =0) to node3 (CURRENT_MASTER =2)
    . Previous master changes from node3 ( PREVIOUS_MASTER=2) to node1( PREVIOUS_MASTER=0)
    – Remaster count increases from 3 to 4.
    .
SYS@NODE2>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
         from   dba_objects o, v$gcspfmaster_info m
        where o.data_object_id=74626
            and m.data_object_id = 74626 ;
16:09:16 SYS@NODE2>/
OBJECT_NAME
 OBJECT_NAME  CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—————–      ————– ————— ————
TEST                                             0                        2                                     3
                        .
                        .
                        .
                        .
16:12:24 SYS@NODE2>/
OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
——————————————————————————–
TEST                                                 2                     0                            4
—- REMASTERING DUE TO INSTANCE CRASH –
Presently node3 is the master of SCOTT.TEST
Let us crash node3 and monitor the remastering process
root@node3#init 6
– check repeatedly if remastering has been initiated –
– Note that scott.test has been remastered to node2 (CURRENT_MASTER=1)
– PREVIOUS_MASTER =2 and REMASTER_CNT has increased from 4 to 5
SYS@NODE2>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
                from   dba_objects o, v$gcspfmaster_info m
                  where o.data_object_id=74626
                  and m.data_object_id = 74626 ;
OBJECT_NAME     CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
————— ————– ————— ————
TEST                         1               2            5
— CLEANUP —
SYS@NODE1>drop table scott.test purge;
SYa@NODE1S>
alter system reset "_gc_policy_minimum" = 10 scope=spfile;
    alter system reset "_gc_policy_time" = 1 scope=spfile; [oracle@host01 ~]$ srvctl stop database -d racdb
                   srvctl start database -d racdb
                   srvctl status database -d racdb
References:

11g R2RAC Dynamic remastering的更多相关文章

  1. RAC object remastering ( Dynamic remastering )

    RAC环境中,每个数据块都被一个instance所管控(mastered),管控数据块的instance被称作主实例(master instance).管控数据块就是说主实例(master insta ...

  2. Oracle 11g trace events

    oracle的events,是我们在做自己的软件系统时可以借鉴的 Oracle 11g trace eventsORA-10001: control file crash event1ORA-1000 ...

  3. Oracle12c版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 12.1.0.1c. Here is a query ...

  4. Oracle11g版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 11g. Here is a query to se ...

  5. Oracle Extended Tracing

      Definitions A trace file is a file that contains diagnostic data used to investigate problems. Als ...

  6. RAC Cache Fusion 原理理解

    cache fusion  .   grd  .  drm   .   gcs  .   ges cache fusion  1.RAC是一个数据库执行在多个实例上.通过DLM(Distributed ...

  7. Oracle 所有字典

    select * from DBA_CONS_COLUMNS ; ---Information about accessible columns in constraint definitions s ...

  8. 关于Oracle RAC中SCN原理和机制的探索

    今天看书时看到了关于RAC中SCN的问题,为了进一步搞清楚其内部原理和机制,对该问题进行了广泛的查阅和搜索,遗憾的是,可以参考的资料很少,网上大部分是人云亦云的帖子,其中,详细介绍其内部原理和机制的资 ...

  9. Cluster的日记体系

    Cluster的日志体系 Cluster的日志体系: Oracle cluster不像数据库那样,具有丰富的视图.工具可以用来辅助诊断,他的日志和trace文件时唯一的选择.但不想oracle只有al ...

随机推荐

  1. hdu1381 Crazy Search(hash map)

    题目意思: 给出一个字符串和字串的长度,求出该字符串的全部给定长度的字串的个数(不同样). 题目分析: 此题为简单的字符串哈hash map问题,能够直接调用STL里的map类. map<str ...

  2. Redis系列之(一):10分钟玩转Redis(转)

    1. Redis介绍 Redis是一个开源的使用ANSI C语言编写.基于内存的Key-Value数据库. 它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集 ...

  3. Cocos2d-x源代码解析(1)——地图模块(3)

    接上一章<Cocos2d-x源代码解析(1)--地图模块(2)> 通过前面两章的分析,我们能够知道cocos将tmx的信息结构化到 CCTMXMapInfo.CCTMXTilesetInf ...

  4. 他们控制的定义-DragButton

    一个.叙述性说明 可拖动Button 两.无图无真相 这是用在实际工程效果图.和demo不太一样. 三.源代码 https://github.com/mentor811/Demo_DragButton ...

  5. a web-based music player(GO + html5)

    github 住址:https://github.com/codercheng/music-player 后台是用GO (windows/ linux 都能够),前端是HTML5 推荐用chrome浏 ...

  6. Android开发模板------自己定义SimpleCursorAdapter的使用

    使用SimpleCursorAdapter所设计的table(数据表)一定要有_id字段名称,否则会出现"找不到_id"的错误 SimpleCursorAdapter直接使用的方法 ...

  7. C++ 虚函数表决心

    C++ 虚函数表解析 xml:namespace prefix = o /> 陈皓 http://blog.csdn.net/haoel 前言 C++中的虚函数的作用主要是实现了多态的机制. 关 ...

  8. Dynamics CRM2013/2015 禁止欢迎屏幕(Disable the Welcome Screen)

    首先打开Dynamic CRM  2013将有一个欢迎界面的例子,下面的图,它不会为了图检查框出现.OK然后,下一次打开就没有. 可是当我们打开F12开发者工具,清除域的缓存后再次打开CRM,这个欢迎 ...

  9. HDU Today (图论)

    经过锦囊相助,海东集团终于度过了危机,从此,HDU的发展就一直顺风顺水,到了2050年,集团已经相当规模了,据说进入了钱江肉丝经济开发区500强.这时候,XHD夫妇也退居了二线,并在风景秀美的诸暨市浬 ...

  10. React.js再探(三)

    很多时候,组件实例的外观和行为我们通过props进行定制就可以了.因为任何时候,组件实例的表现只跟 传过来的props属性 相关. 我们称这种为 无状态/ stateless 组件 即它自身是 无记忆 ...