不可解问题之停机问题(Undecidable Problem Halting Problem)
计算机技术已运用到人类生活的方方面面,帮助人类解决各种问题。可你是否有想过,计算机是否能为人类解决所有问题呢?
假如你是一个程序猿,你已编写过很多程序。有些程序一下子就能出结果,有些程序则好久都没有显示结果。你不知道这些程序到底最终是否会显示结果。你突然灵光一现---“能不能设计一个程序,用于检测任意程序最终会停止运行还是会无限运行下去”。这样,你就不用为了得到程序的结果而等很久,有时甚至还无法确定到底是不是程序本身出现了问题,导致程序无限循环。
说干就干,你为这一想法设计的思路如下:
定义一个all_mighty_program,其输入参数是需测试的程序本身和其输入
如果该程序最终停止运行,返回True
如果该程序最终无法停止运行,则返回False
然后你根据此写了一段伪代码(pseudocode):
def all_mighty_program (code, code_input): if code (code_input) halts: return True else: return False
那么有没有什么测试程序能使上面的这段伪代码失效呢?为此,你需要进行反证。
首先,需测试的程序有两种可能性:
1,该程序最终会返回某值
2,该程序会无限循环下去
对于第一种可能性:在某个条件下,该程序最终会返回某值,也就是说该程序最终会停止运行。
需要把这个条件设计成与上面的伪代码相反。既然上面的伪代码是测试程序最终停止运行返回True,那么把条件设计成:当上面的伪代码返回False时,测试程序最终会停止。
同样,对于第二种可能性:在某个条件下,该程序会无限循环下去,也就是说该程序最终会无限运行下去。
需要把这个条件设计成与上面的伪代码相反。既然上面的伪代码是测试程序最终无法停止运行返回False,那么把条件设计成:当上面的伪代码返回True时,测试程序最终会无限循环下去。
写成伪代码如下:
def code (code_input): if all_mighty_program (code, code_input) is False: return True else: loop forever
由此可以看出,这两段伪代码的逻辑是矛盾的。当all_mighty_program (code, code_input)是False时(也就是code会无限循环下去时),code (code_input)是返回True值的(也就是code最终会停止运行)。
停机问题(Halting Probelm)是决定任意程序最终是会停止运行还是会无限运行下去的问题。
Alan Turing在1963年就证明,没有这样一个通用的算法存在,此算法在所有可能的输入参数下可以解决停机问题。
不可解问题之停机问题(Undecidable Problem Halting Problem)的更多相关文章
- The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online -C:Halting Problem(模拟)
C Halting Problem In computability theory, the halting problem is the problem of determining, from a ...
- Halting Problem
Halting Problem: 传送门:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4049 总结一个小规律:题目中给的 ...
- lightoj 1102 - Problem Makes Problem
1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...
- light oj 1102 - Problem Makes Problem组合数学(隔板法)
1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...
- 停机问题(英语:halting problem)是逻辑数学中可计算性理论的一个问题。通俗地说,停机问题就是判断任意一个程序是否能在有限的时间之内结束运行的问题。该问题等价于如下的判定问题:是否存在一个程序P,对于任意输入的程序w,能够判断w会在有限时间内结束或者死循环。
htps://baike.baidu.com/item/停机问题/4131067?fr=aladdin 理发师悖论:村子里有个理发师,这个理发师有条原则是,对于村里所有人,当且仅当这个人不自己理发,理 ...
- (light oj 1102) Problem Makes Problem (组合数 + 乘法逆元)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, ...
- LightOJ - 1102 - Problem Makes Problem(组合数)
链接: https://vjudge.net/problem/LightOJ-1102 题意: As I am fond of making easier problems, I discovered ...
- P与NP问题详解
P,NP,NPC问题,这或许是众多OIer最大的误区之一. 本文就为大家详细讲解如上三个问题. 前序: 你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之 ...
- NP问题/NP完全问题(NP-complete problem)如何判断是否是NP完全问题
在算法复杂度分析的过程中,人们常常用特定的函数来描述目标算法,随着变量n的增长,时间或者空间消耗的增长曲线,近而进一步分析算法的可行性(有效性). 引入了Big-O,Big-Ω,来描述目标算法的上限. ...
随机推荐
- Jmeter(三十五)_分布式
jmeter分布式简单步骤说明: 1:添加远程服务器IP到配置文件 在JMETER_HOME / bin / jmeter.properties中,找到名为“ remote_hosts ” 的属性,并 ...
- Flask序列化
我们在做后台接口的时候,对于返回值,用的最多的就是json数据格式 flask中,返回json数据格式,我们可以用到flask的jsonify函数. 对于基础序列是可以直接序列化的,但是更多的情况下, ...
- H5 37-背景缩写
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- H5 16-并集选择器
16-并集选择器 我是标题 我是段落 我是段落 我是段落 <!DOCTYPE html> <html lang="en"> <head> < ...
- C. Painting the Fence
链接 [https://codeforces.com/contest/1132/problem/C] 题意 就是有个n长的栅栏,然后每个油漆工可以染的区域不同 给你q让你选出q-2个人使得被染色的栅栏 ...
- stark组件的分页,模糊查询,批量删除
1.分页组件高阶 2.整合展示数据showlist类 3.stark组件之分页 3.stark组件之search模糊查询 4.action批量处理数据 4.总结 1.分页组件高阶 1.分页的class ...
- 【问题解决方案】之 hadoop 用jps命令后缺少namenode的问题
用Xshell连接腾讯cloud里的虚拟机后,jps命令查无namenode导致过滤排序程序跑不起来,如图: 解决方案: Google之,说需要重启,格式化后再启动Hadoop.但鉴于本人不知道实现的 ...
- 二、npm scripts
一.执行原理 安装npm 包,会将其package.json bin 字段添加到node_modules bin 里面,创建对应的.cmd文件,因此: 例如: "scripts": ...
- [转帖]Nginx rewrite模块深入浅出详解
Nginx rewrite模块深入浅出详解 https://www.cnblogs.com/beyang/p/7832460.html rewrite模块(ngx_http_rewrite_modul ...
- NOIP2016提高组复赛C 愤怒的小鸟
题目链接:http://uoj.ac/problem/265 题目大意: 太长了不想概括... 分析: 状压DP的模板题,把所有可能的抛物线用二进制表示,然后暴力枚举所有组合,详情见代码内注释 代码如 ...