https://www.luogu.org/problemnew/solution/P4002 神树的题解写的很清楚了。稍微补充:

  1.[x^i]ln(A(ax))=a^i[x^i]ln(A(x)),感觉直接证并非那么显然,大约是先求出多项式再把ax作为自变量带回去。

  2.最后一句中的式子,即考虑由ai组成的|S|=k的S集合在xk中被统计了几次,容易发现仅当这个Σ∏(1-ajx) (i=1~n,j≠i)中的ai不在S中出现会被统计一次,于是统计次数为n-k,所以乘上n-k即为所要的系数。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 150010
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,s[N],a[N],b[N],c[N],d[N],e[N],f[N],g[N],h[N],A[N],B[N],r[N],fac[N],t;
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
void DFT(int *a,int n,int g)
{
for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x+P-y)%P;
}
}
}
}
void IDFT(int *a,int n)
{
DFT(a,n,inv(3));
int u=inv(n);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
}
void mul(int *a,int *b,int n)
{
DFT(a,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
IDFT(a,n);IDFT(b,n);
}
void Inv(int *a,int *b,int n)
{
if (n==1){for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
Inv(a,b,n>>1);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(b,n,3),DFT(A,n,3);
for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void trans(int *a,int *b,int n){for (int i=n-1;i>=0;i--) b[i]=1ll*a[i+1]*(i+1)%P;}
void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;}
void Ln(int *a,int n)
{
for (int i=0;i<n;i++) b[i]=c[i]=0;
Inv(a,b,n>>1);
trans(a,c,n>>1);
mul(b,c,n);
dx(b,a,n);
}
void Exp(int *a,int *b,int n)
{
if (n==1){b[0]=1;return;}
Exp(a,b,n>>1);
for (int i=0;i<(n>>1);i++) B[i]=b[i];
for (int i=(n>>1);i<n;i++) B[i]=0;
Ln(B,n);
for (int i=0;i<n;i++) B[i]=(a[i]-B[i]+P)%P;
B[0]=(B[0]+1)%P;
n<<=1;
for (int i=(n>>1);i<n;i++) B[i]=0;
mul(b,B,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void solve(int l,int r,int *a)
{
if (l==r) {a[0]=1;a[1]=P-s[l];return;}
int mid=l+r>>1;
int t=1;while (t<=r-l+1) t<<=1;
int A[t],B[t];memset(A,0,sizeof(A)),memset(B,0,sizeof(B));
solve(l,mid,A),solve(mid+1,r,B);
mul(A,B,t);
for (int i=0;i<t;i++) a[i]=A[i];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5119.in","r",stdin);
freopen("bzoj5119.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<=n;i++) s[i]=read();
fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P;
int t=1;while (t<=(n<<1)) t<<=1;
for (int i=0;i<n;i++) f[i]=1ll*ksm(i+1,m)*inv(fac[i])%P;
for (int i=0;i<n;i++) g[i]=1ll*ksm(i+1,m)*f[i]%P;
Inv(f,a,t>>1);
mul(g,a,t);
for (int i=n;i<t;i++) g[i]=0;
Ln(f,t);
solve(1,n,h);
Inv(h,e,t>>1);
for (int i=0;i<n;i++) h[i]=1ll*h[i]*(n-i)%P;
mul(h,e,t);
for (int i=0;i<n;i++) g[i]=1ll*g[i]*h[i]%P;
for (int i=0;i<n;i++) f[i]=1ll*f[i]*h[i]%P;
Exp(f,d,t);
for (int i=(t>>1);i<t;i++) d[i]=0;
mul(d,g,t);
int ans=d[n-2];
for (int i=1;i<=n;i++) ans=1ll*ans*s[i]%P;
cout<<1ll*ans*fac[n-2]%P;
return 0;
}

  

BZOJ5119 生成树计数(prufer+生成函数+分治FFT+多项式exp)的更多相关文章

  1. 【XSY2887】【GDOI2018】小学生图论题 分治FFT 多项式exp

    题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to ...

  2. 【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理

    题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 1525 ...

  3. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

  4. bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...

  5. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  6. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  7. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  8. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  9. BZOJ5475 WC2019数树(prufer+容斥原理+树形dp+多项式exp)

    因为一大堆式子实在懒得写题解了.首先用prufer推出CF917D用到的结论,然后具体见前言不搭后语的注释. #include<iostream> #include<cstdio&g ...

随机推荐

  1. MySQL常用SQL语句/函数/存储过程

    一句话总结 SELECT count(*) FROM user WHERE id>0 GROUP BY name HAVING count(*)>1 ORDER BY count(*)DE ...

  2. .NetCore简单学习图谱

    一.学习途径 学习.netcore的最佳途径在哪里,无疑是微软官方.netCore指南.它覆盖十分全面,就目前网上经常看到的各种文章都能在微软处找到类似文章,堪称.netcore的百科全书.所以我利用 ...

  3. Python从菜鸟到高手(6):获取用户输入、函数与注释

    1. 获取用户输入   要编写一个有实际价值的程序,就需要与用户交互.当然,与用户交互有很多方法,例如,GUI(图形用户接口)就是一种非常好的与用户交互的方式,不过我们先不讨论GUI的交互方式,本节会 ...

  4. .NET Core Community 第三个千星项目诞生:爬虫 DotnetSpider

    本文所有打赏将全数捐赠于 NCC(NCC 的资金目前由 倾竹大人 负责管理),请注明捐赠于 NCC.捐赠情况将由倾竹大人在此处公示. DotnetSpider 至力于打造一个轻量化.高效率.易开发.可 ...

  5. LeetCode 657. Robot Return to Origin

    There is a robot starting at position (0, 0), the origin, on a 2D plane. Given a sequence of its mov ...

  6. AtCoder Beginner Contest 049 & ARC065 連結 / Connectivity AtCoder - 2159 (并查集)

    Problem Statement There are N cities. There are also K roads and L railways, extending between the c ...

  7. Python_阻塞IO、非阻塞IO、IO多路复用

    0.承上 进程: 计算机里最小的资源分配单位: 数据隔离, 利用多核,数据不安全. 线程: 计算机中最小的CPU调度单位: 数据共享,GIL锁,数据不安全. 协程: 线程的一部分,是有用户来调度的; ...

  8. linux系统下MySQL表名区分大小写问题

    linux系统下MySQL表名区分大小写问题 https://www.cnblogs.com/jun1019/p/7073227.html [mysqld] lower_case_table_name ...

  9. Spring.profile配合Jenkins发布War包,实现开发、测试和生产环境的按需切换

    前两篇不错 Spring.profile实现开发.测试和生产环境的配置和切换 - Strugglion - 博客园https://www.cnblogs.com/strugglion/p/709102 ...

  10. React-Native之轮播组件looped-carousel的介绍与使用

    React-Native之轮播组件looped-carousel的介绍与使用 一,关于react-native轮播组件的介绍与对比 1,react-native-swiper在动态使用网页图片,多张图 ...