【LOJ#6060】Set(线性基)

题面

LOJ

题解

好题啊QwQ。

首先\(x1\oplus x2=s\)是定值。而\(s\)中假设某一位上是\(1\),则\(x1,x2\)上必定有一个是\(1\),另一个是\(0\),所以对答案没有影响。反过来,如果\(s\)上某一位为\(0\),则要么都是\(0\),要么都是\(1\)。

所以我们在考虑构造线性基的时候,优先考虑\(0\)的位,再考虑\(1\)的位。

那么现在只需要令\(x2\)在原本在\(s\)是\(0\)的位置上取到尽可能多的\(1\)的情况下最大,这样子异或一下就是\(x1\)了。(好乱啊)

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 100100
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n;ll a[MAX],s,p[70],s1,s2;
int b[70],tot;
void insert(ll x)
{
for(int i=1;i<=tot;++i)
if(x&(1ll<<b[i]))
{
if(!p[i]){p[i]=x;break;}
else x^=p[i];
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read(),s^=a[i];
for(int i=62;~i;--i)if(!(s&(1ll<<i)))b[++tot]=i;
for(int i=62;~i;--i)if(s&(1ll<<i))b[++tot]=i;
for(int i=1;i<=n;++i)insert(a[i]);
for(int i=1;i<=tot;++i)if(!(s2&(1ll<<b[i])))s2^=p[i];
printf("%lld\n",s^s2);
return 0;
}

【LOJ#6060】Set(线性基)的更多相关文章

  1. LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)

    LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...

  2. LOJ.6060.[2017山东一轮集训Day1/SDWC2018Day1]Set(线性基)

    LOJ BZOJ 明明做过一道(最初思路)比较类似的题啊,怎么还是一点思路没有. 记所有元素的异或和为\(s\),那么\(x_1+x_2=x_1+x_1\ ^{\wedge}s\). \(s\)是确定 ...

  3. loj#2013. 「SCOI2016」幸运数字 点分治/线性基

    题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...

  4. LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset

    题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...

  5. LOJ 2978 「THUSCH 2017」杜老师——bitset+线性基+结论

    题目:https://loj.ac/problem/2978 题解:https://www.cnblogs.com/Paul-Guderian/p/10248782.html 第 i 个数的 bits ...

  6. loj#2312. 「HAOI2017」八纵八横(线性基 线段树分治)

    题意 题目链接 Sol 线性基+线段树分治板子题.. 调起来有点自闭.. #include<bits/stdc++.h> #define fi first #define se secon ...

  7. LOJ.114.K大异或和(线性基)

    题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...

  8. LOJ #113. 最大异或和 (线性基)

    题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 ...

  9. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)

    LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...

随机推荐

  1. net core 端口设置

    在supervisor的启动配置里面增加环境变量: environment=ASPNETCORE_URLS='http://*:5001'

  2. javaweb之Cookie学习

    Cookie简介 HTTP是无状态协议,服务器不能记录浏览器的访问状态,也就是说服务器不能区分中两次请求是否由一个客户端发出.这样的设计严重阻碍的Web程序的设计.如:在我们进行网购时,买了一条裤子, ...

  3. scrapy之基础概念与用法

    scrapy之基础概念与用法 框架 所谓的框架就是一个项目的半成品.也可以说成是一个已经被集成了各种功能(高性能异步下载.队列.分布式.解析.持久化等)的具有很强通用性的项目模板. 安装 Linux: ...

  4. java开发中使用枚举表述数据字典

    一.用枚举表述数据字典 1.代码: package com.inspire.jdk.caculate; /** * Created by yaming * 用枚举表述常量数据字段 */ public ...

  5. PHPer未来路在何方...

    PHP 从诞生到现在已经有20多年历史,从Web时代兴起到移动互联网退潮,互联网领域各种编程语言和技术层出不穷, Node.js . GO . Python 不断地在挑战 PHP 的地位.这些技术的推 ...

  6. bootstrap模态框关闭后清除模态框的数据

    https://segmentfault.com/q/1010000008789123 bootstrap模态框第二次打开时如何清除之前的数据? 我用了bootstrap模态框的remote功能,在弹 ...

  7. C# Note23: 如何自定义类型使用foreach循环

    前言 在foreach语句代码中,我们经常是对List,Collection,Dictionary等类型的数据进行操作,不过C#允许用户自定义自己的类型来使用foreach语句.那么自定义类型能够使用 ...

  8. 谈谈git/github

    先说git/github操作 ->关于git/github操作的好文章已经非常多,如: github使用指南 廖雪峰的git教程 本文的目的在于,积累自己平时相关的操作和想法,记录下来,形成自己 ...

  9. AssemblyScript的测试

    详细文档介绍 export function f(x: i32): i32 { if (x === 1 || x === 2) { return 1; } return f(x - 1) + f(x ...

  10. 解决mybatis generator警告Cannot obtain primary key information from the database, generated objects may be incomplete

    使用 mybatis generator 生成pojo.dao.mapper时 经常出现 Cannot obtain primary key information from the database ...