【BZOJ5308】[ZJOI2018]胖(模拟,ST表,二分)

题面

BZOJ

洛谷

题解

首先发现每条\(0\)出发的边都一定会更新到底下的一段区间的点。

考虑存在一条\(0\rightarrow x\)的边,我们来求解其可以影响的区间\([L,R]\),显然\(L\le x\le R\)。

两侧分开考虑,以左边举例。

二分一个\(L\)。如果这个\(L\)可行,即不存在一条边\(0\rightarrow y\),满足\(W_{0\rightarrow x}+Dis(L,x)\ge W_{0\rightarrow y}+Dis(L,y)\),且\(abs(y-L)\le abs(x-L)\)。

也就是要么\(x\)出发能够更新最短路,要么就是\(x\)离\(L\)更近,所以先被\(x\)的路径更新了一次。

那么对于二分出来的\(L\),令\(len=|x-L|\),如果在\([L-len,L+len]\)区间内存在一个点能够更新出更小的距离则当前\(L\)不可行。\(R\)同理。

然后大力\(ST\)表二分一下就好了。

注意一下如果一个点可以同时被多个点更新的时候,一定要确定好一个顺序关系,使得最终计算出来的结果不重不漏。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 200200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,Q,k,lg[MAX];
ll w[MAX],v1[MAX],v2[MAX];
ll mn[20][MAX],mx[20][MAX];
struct Line{int x,w;}a[MAX];
bool operator<(Line a,Line b){return a.x<b.x;}
int Max(int x,int y)
{
if(v1[x]!=v1[y])return v1[x]>v1[y]?x:y;
if(a[x].x!=a[y].x)return a[x].x>a[y].x?x:y;
return x<y?x:y;
}
int Min(int x,int y)
{
if(v2[x]!=v2[y])return v2[x]<v2[y]?x:y;
if(a[x].x!=a[y].x)return a[x].x<a[y].x?x:y;
return x<y?x:y;
}
void pre()
{
for(int i=1;i<=k;++i)
v1[i]=w[a[i].x]-a[i].w,v2[i]=w[a[i].x]+a[i].w;
for(int i=1;i<=k;++i)mx[0][i]=mn[0][i]=i;
for(int j=1;j<=lg[k];++j)
for(int i=1;i+(1<<j)-1<=k;++i)
{
mx[j][i]=Max(mx[j-1][i],mx[j-1][i+(1<<(j-1))]);
mn[j][i]=Min(mn[j-1][i],mn[j-1][i+(1<<(j-1))]);
}
}
ll RMQ_mx(int l,int r)
{
int k=lg[r-l+1];
return Max(mx[k][l],mx[k][r-(1<<k)+1]);
}
ll RMQ_mn(int l,int r)
{
int k=lg[r-l+1];
return Min(mn[k][l],mn[k][r-(1<<k)+1]);
}
bool check(int x,int l,int y)
{
int p=lower_bound(&a[1],&a[k+1],(Line){y-l,0})-a;
int q=upper_bound(&a[1],&a[k+1],(Line){y+l,0})-a-1;
int r=lower_bound(&a[1],&a[k+1],(Line){y,0})-a;
if(r<=q)
{
int pos=RMQ_mn(r,q);ll V=abs(w[a[x].x]-w[y])+a[x].w;
if(v2[pos]-w[y]<V||(v2[pos]-w[y]==V&&abs(a[pos].x-y)<abs(a[x].x-y))
||(v2[pos]-w[y]==V&&abs(a[pos].x-y)==abs(a[x].x-y)&&pos<x))
return false;
}
if(p<r)
{
int pos=RMQ_mx(p,r-1);ll V=abs(w[a[x].x]-w[y])+a[x].w;
if(w[y]-v1[pos]<V||(w[y]-v1[pos]==V&&abs(a[pos].x-y)<abs(y-a[x].x))
||(w[y]-v1[pos]==V&&abs(a[pos].x-y)==abs(a[x].x-y)&&pos<x))
return false;
}
return true;
}
int GetL(int x)
{
int l=1,r=a[x].x,ret=a[x].x;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(x,a[x].x-mid,mid))ret=mid,r=mid-1;
else l=mid+1;
}
return ret;
}
int GetR(int x)
{
int l=a[x].x,r=n,ret=a[x].x;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(x,mid-a[x].x,mid))ret=mid,l=mid+1;
else r=mid-1;
}
return ret;
}
ll Solve()
{
k=read();for(int i=1;i<=k;++i)a[i].x=read(),a[i].w=read();
sort(&a[1],&a[k+1]);
pre();ll ans=0;
for(int i=1;i<=k;++i)
{
ans+=GetR(i)-GetL(i)+1;
}
return ans;
}
int main()
{
n=read();Q=read();
for(int i=2;i<=n;++i)lg[i]=lg[i>>1]+1;
for(int i=2;i<=n;++i)w[i]=read()+w[i-1];
while(Q--)printf("%lld\n",Solve());
return 0;
}

【BZOJ5308】[ZJOI2018]胖(模拟,ST表,二分)的更多相关文章

  1. 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)

    题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...

  2. 「ZJOI2018」胖(ST表+二分)

    「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...

  3. BZOJ5308 ZJOI2018胖

    贝尔福特曼(?)的方式相当于每次将所有与源点直接相连的点的影响区域向两边各扩展一格.显然每个点在过程中最多更新其他点一次且这些点构成一段连续区间.这个东西二分st表查一下就可以了.注意某一轮中两点都更 ...

  4. 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分

    4310: 跳蚤 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 180  Solved: 83[Submit][Status][Discuss] De ...

  5. BZOJ4556 [Tjoi2016&Heoi2016]字符串 SA ST表 二分答案 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4556.html 题目传送门 - BZOJ4556 题意 给定一个长度为 $n$ 的字符串 $s$ . ...

  6. hdu5289 ST表+二分

    用裸的St表+暴力枚举查询时稳TLE的,可以枚举每个区间的起点+二分满足条件的区间右端,这样复杂度是O(nlogn) #include<iostream> #include<cstr ...

  7. luoguP5108 仰望半月的夜空 [官方?]题解 后缀数组 / 后缀树 / 后缀自动机 + 线段树 / st表 + 二分

    仰望半月的夜空 题解 可以的话,支持一下原作吧... 这道题数据很弱..... 因此各种乱搞估计都是能过的.... 算法一 暴力长度然后判断判断,复杂度\(O(n^3)\) 期望得分15分 算法二 通 ...

  8. 2016多校联合训练1 D题GCD (ST表+二分)

    暑假颓废了好久啊...重新开始写博客 题目大意:给定10w个数,10w个询问.每次询问一个区间[l,r],求出gcd(a[l],a[l+1],...,a[r])以及有多少个区间[l',r']满足gcd ...

  9. GCD(st表+二分)

    GCD Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  10. ZSTU 4241 圣杯战争(ST表+二分)

    题目链接  ZSTU 4241 问题转化为有很多区间,现在每次给定一个区间求这个区间和之前所有区间中的某一个的交集的最大长度. 强制在线. 首先我们把所有的区间预处理出来. 然后去重(那些被包含的小区 ...

随机推荐

  1. python中的Init方法, new 方法 call 方法

    new 方法实现单列模式思考 class Single: _single = None _single_only = None def __init__(self, value): self.v = ...

  2. 【问题解决方案】之 Word 公式编辑器 使用小tips

    输入空格:shift+Ctrl+space 换行:直接回车.之后在上方菜单栏中选择"在等号处对齐"

  3. 如何在 Linux 中查找最大的 10 个文件

    https://linux.cn/article-9495-1.html

  4. react中如何使用动画效果

    在react中想要加入动画效果 需要引入 import {CSSTransitionGroup} from 'react-transition-group' //加入react 动画包 import ...

  5. SQL常见问题积累

    SQL积累--仅适用于SQL Server 1.sql中,字符串保存序号,按照数字顺序进行排序 ))),) asc --householdNo 为要排序字段 2.控制小数位数 ,),,)))+'%' ...

  6. C# Note21: 扩展方法(Extension Method)及其应用

    前言 今天在开会时提到的一个概念,入职3个多月多注重在项目中使用C#的编程知识,一直没有很认真地过一遍C#的全部语法,当我们新人被问及是否了解Extension Method时,一时之间竟不能很通俗准 ...

  7. 机顶盒webview开发调试

    安装node的anywhere插件  启动本地服务器后 使用chrome的DevTool----->   chrome://inspect/#devices 点击inspect  第一次需要FQ ...

  8. /dev被异常删除的问题

    今天遇到一个问题,在执行某些操作后,发现经常报“read_urandom: /dev/urandom: open failed: No such file or directory”这个错误.后来查看 ...

  9. python3文字转语音

    #安装库(必须先安装pywin32) pip3 install pyttsx3 简单测试 import pyttsx3 engine = pyttsx3.init() text='name' engi ...

  10. 关于IWMS中遇到的问题及解决方法

    1.生成的文章上传到外网上,但是没一会儿又变成原来的样子? 解决方案:把上传页面对应的template中的.aspx页面也要上传到外网去.