Loj #3057. 「HNOI2019」校园旅行
Loj #3057. 「HNOI2019」校园旅行
某学校的每个建筑都有一个独特的编号。一天你在校园里无聊,决定在校园内随意地漫步。
你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来——但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串。
你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题。
学校可以看成一张图,建筑是图中的顶点,而某些顶点之间存在无向边。对于每个顶点我们有一个标记(\(0\) 或者 \(1\))。每次你会选择图中两个顶点,你想知道这两个顶点之间是否存在一条路径使得路上经过的点的标记形成一个回文串。
一个回文串是一个字符串使得它逆序之后形成的字符串和它自己相同,比如 \(010\),\(1001\) 都是回文串,而 \(01\),\(110\) 不是。注意长度为 \(1\) 的串总是回文串,因此如果询问的两个顶点相同,这样的路径总是存在。此外注意,经过的路径不一定为简单路径,也就是说每条边每个顶点都可以经过任意多次。
输入格式
第一行三个整数 \(n,m,q\),表示图中的顶点数和边数,以及询问数。
第二行为一个长度为 \(n\) 的 \(01\) 串,其中第 \(n\) 个字符表示第 \(i\) 个顶点(即顶点 \(i\))的标记,点从 \(1\) 开始编号。
接下来 \(m\) 行,每一行是两个整数 \(u_i,v_i\),表示顶点 \(u_i\) 和顶点 \(v_i\) 之间有一条无向边,不存在自环或者重边。
接下来 \(q\) 行,每一行存在两个整数 \(x_i,y_i\),表示询问顶点 \(x_i\) 和顶点 \(y_i\) 的点之间是否有一条满足条件的路径。
输出格式
输出 \(q\) 行,每行一个字符串 YES
,或者 NO
。输出 YES
表示满足条件的路径存在,输出 NO
表示不存在。
样例
样例输入 1
5 4 2
00010
4 5
1 3
4 2
2 5
3 5
1 3
样例输出 1
NO
YES
样例说明 1
对于第一个询问,\(3\) 号点和 \(2\) 号点不连通, 因此答案为 NO
。
对于第二个询问,一条合法的路径是 \(1 \to 3\),路径上的标号形成的字符串为 \(00\)。注意合法路径不唯一。
样例输入 2
10 11 10
0011011111
4 6
10 6
5 9
4 7
10 7
5 8
1 9
5 7
1 10
5 1
5 6
10 3
7 4
8 10
9 4
8 9
6 6
2 2
9 9
10 9
3 4
样例输出 2
NO
YES
YES
NO
YES
YES
YES
YES
YES
NO
数据范围与提示
对于 \(30\%\) 的数据,\(1 \le m \le 10^4\);
对于 \(70\%\) 的数据,\(1\le n\le 3\times 10^3,1 \le m \le 5\times 10^4\);
对于 \(100\%\) 的数据,\(1 \le n \le 5\times 10^3, 1 \le m \le 5\times 10^5, 1 \le q \le 10^5\)。
首先很容易想到暴力两边并行\(DFS\)的做法,这样复杂度是\(O(m^2)\)的。
然后考虑优化建边。
对于同种颜色的联通块,如果它是个二分图就保留一个生成树边就行了。因为对于一条非树边,它一定在一个偶环上。假设现在走到\(a,b\),然后\(a\)要走非树边,那么我们实际上随便走一个环,然后\(b\)就找一个相邻的同色节点(如果有的话)反复横跳,因为是偶环,所以是等价的。
如果不是一个二分图,那么我们依然保留非树边,然后随便从一个点连一个子环。因为我们可以改变路径的奇偶。
对于两边颜色不同的边,他们组成的图一定是一个二分图。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 5005
#define M 1000005
#define Q 100005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m,q;
struct road {
int to,nxt;
}s[M<<1];
int h[N],cnt;
void add(int i,int j) {
s[++cnt]=(road) {j,h[i]};h[i]=cnt;
}
vector<int>e[N];
bool ans[N][N];
char str[N];
int col[N];
#define pr pair<int,int>
#define mp(a,b) make_pair(a,b)
queue<pr>que;
vector<pr>vec;
void bfs() {
for(int i=0;i<vec.size();i++) {
int a=vec[i].first,b=vec[i].second;
if(a>b) swap(a,b);
ans[a][b]=1;
que.push(mp(a,b));
}
while(!que.empty()) {
int x=que.front().first,y=que.front().second;
que.pop();
for(int i=h[x];i;i=s[i].nxt) {
for(int j=h[y];j;j=s[j].nxt) {
int a=s[i].to,b=s[j].to;
if(col[a]!=col[b]) continue ;
if(a>b) swap(a,b);
if(!ans[a][b]) {
ans[a][b]=1;
que.push(mp(a,b));
}
}
}
}
}
int f[N];
int Getf(int v) {return v==f[v]?v:f[v]=Getf(f[v]);}
int flag;
int w[N];
void dfs(int v,int Col) {
w[v]=Col;
for(int i=0;i<e[v].size();i++) {
int to=e[v][i];
if(w[to]==-1) {
add(v,to),add(to,v);
dfs(to,Col^1);
} else if(w[v]==w[to]) flag=0;
ans[v][to]=ans[to][v]=1;
que.push(mp(min(v,to),max(v,to)));
}
}
int main() {
n=Get(),m=Get(),q=Get();
scanf("%s",str+1);
for(int i=1;i<=n;i++) col[i]=str[i]-'0';
for(int i=1;i<=n;i++) f[i]=i;
int a,b;
for(int i=1;i<=m;i++) {
a=Get(),b=Get();
if(col[a]!=col[b]) {
if(Getf(a)!=Getf(b)) {
add(a,b),add(b,a);
f[Getf(a)]=Getf(b);
}
} else {
e[a].push_back(b),e[b].push_back(a);
}
if(a>b) swap(a,b);
if(col[a]==col[b]) vec.push_back(mp(a,b));
}
for(int i=1;i<=n;i++) vec.push_back(mp(i,i));
memset(w,-1,sizeof(w));
for(int i=1;i<=n;i++) {
if(w[i]!=-1) continue ;
flag=1;
dfs(i,0);
if(!flag) add(i,i);
}
bfs();
while(q--) {
a=Get(),b=Get();
if(a>b) swap(a,b);
if(ans[a][b]) cout<<"YES\n";
else cout<<"NO\n";
}
return 0;
}
Loj #3057. 「HNOI2019」校园旅行的更多相关文章
- LOJ 3057 「HNOI2019」校园旅行——BFS+图等价转化
题目:https://loj.ac/problem/3057 想令 b[ i ][ j ] 表示两点是否可行,从可行的点对扩展.但不知道顺序,所以写了卡时间做数次 m2 迭代的算法,就是每次遍历所有不 ...
- 「loj3057」「hnoi2019」校园旅行
题目 一个n个点m条边的无向图,每个点有0 / 1 的标号; 有q个询问,每次询问(u,v)直接是否存在回文路径(可以经过重复的点和边); $1 \le n \le 5 \times 10^3 , ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
- LOJ 3059 「HNOI2019」序列——贪心与前后缀的思路+线段树上二分
题目:https://loj.ac/problem/3059 一段 A 选一个 B 的话, B 是这段 A 的平均值.因为 \( \sum (A_i-B)^2 = \sum A_i^2 - 2*B \ ...
- LOJ 3056 「HNOI2019」多边形——模型转化+树形DP
题目:https://loj.ac/problem/3056 只会写暴搜.用哈希记忆化之类的. #include<cstdio> #include<cstring> #incl ...
- LOJ 3055 「HNOI2019」JOJO—— kmp自动机+主席树
题目:https://loj.ac/problem/3055 先写了暴力.本来想的是 n<=300 的那个在树上暴力维护好整个字符串, x=1 的那个用主席树维护好字符串和 nxt 数组.但 x ...
随机推荐
- WPF 水平进度条
WPF设计界面过程中,有时需要设计一种可以手动滑动修改并实时显示的进度条 进度条,效果如下: 颜色.图标.节点什么的,都可以重新替换. 前端XAML代码: <UserControl x:Clas ...
- 1.写页面 2.css的继承属性有哪些 3.margin对布局的影响
1. sparent 透明的 2. placeholder 提示语 写页面 1.搞清结构层次 2. 保证模块化 让它们之间不能收到影响. (1) 元素性质 (2)标准流 浮动带来的脱离文档流撑不起父级 ...
- 虚拟机与Docker有何不同?
译者按: 各种虚拟机技术开启了云计算时代:而Docker,作为下一代虚拟化技术,正在改变我们开发.测试.部署应用的方式.那虚拟机与Docker究竟有何不同呢? 原文: Comparing Virtua ...
- crontab清理日志
1.日志介绍 2.日志清理 (以下达到清理效果) du -sh * //查看日志大小 * 1 * * * cat /dev/null > /var/log/message 解释/dev/nul ...
- [总结]WEB前端常用命令
webpack等工具操作 自动创建package.json文件:npm init 如何根据package.json来自动安装包:npm install npm具体安装某个组件:npm install ...
- jQuery效果之雪花飘落
实现思路 1.在一定的频率下在页面中生成一定数目的雪花从上往下飘落: 2.在指定的时间内飘落后移除页面: 3.可设置雪花的大小,在一定范围内随机雪花大小: 4.什么时间后清除生成雪花,停止函数. js ...
- BZOJ2783: [JLOI2012]树(树上前缀和+set)
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1215 Solved: 768[Submit][Status][Discuss] Descriptio ...
- Android为TV端助力 EventBus.getDefault()开源框架
在onCreate里面执行 EventBus.getDefault().register(this);意思是让EventBus扫描当前类,把所有onEvent开头的方法记录下来,如何记录呢?使用Map ...
- Android图片加载为什么选择glide
为什么图片加载我首先Glide 图片加载框架用了不少,从afinal框架的afinalBitmap,Xutils的BitmapUtils,老牌框架universalImageLoader,著名开源组织 ...
- Codeup
问题 I: 习题5-10 分数序列求和 时间限制: 1 Sec 内存限制: 12 MB提交: 611 解决: 537[提交][状态][讨论版][命题人:外部导入] 题目描述 有如下分数序列 求出次 ...