Netty中ByteBuf 的零拷贝
转载:https://www.jianshu.com/p/1d1fa2fe1ed9
此文章已同步发布在我的 segmentfault 专栏.
根据 Wiki 对 Zero-copy 的定义:
"Zero-copy" describes computer operations in which the CPU does not perform the task of copying data from one memory area to another. This is frequently used to save CPU cycles and memory bandwidth when transmitting a file over a network.
即所谓的 Zero-copy
, 就是在操作数据时, 不需要将数据 buffer 从一个内存区域拷贝到另一个内存区域. 因为少了一次内存的拷贝, 因此 CPU 的效率就得到的提升.
在 OS 层面上的 Zero-copy
通常指避免在 用户态(User-space)
与 内核态(Kernel-space)
之间来回拷贝数据. 例如 Linux 提供的 mmap
系统调用, 它可以将一段用户空间内存映射到内核空间, 当映射成功后, 用户对这段内存区域的修改可以直接反映到内核空间; 同样地, 内核空间对这段区域的修改也直接反映用户空间. 正因为有这样的映射关系, 我们就不需要在 用户态(User-space)
与 内核态(Kernel-space)
之间拷贝数据, 提高了数据传输的效率.
而需要注意的是, Netty 中的 Zero-copy
与上面我们所提到到 OS 层面上的 Zero-copy
不太一样, Netty的 Zero-coyp
完全是在用户态(Java 层面)的, 它的 Zero-copy
的更多的是偏向于 优化数据操作
这样的概念.
Netty 的 Zero-copy
体现在如下几个个方面:
- Netty 提供了
CompositeByteBuf
类, 它可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf, 避免了各个 ByteBuf 之间的拷贝. - 通过 wrap 操作, 我们可以将 byte[] 数组、ByteBuf、ByteBuffer等包装成一个 Netty ByteBuf 对象, 进而避免了拷贝操作.
- ByteBuf 支持 slice 操作, 因此可以将 ByteBuf 分解为多个共享同一个存储区域的 ByteBuf, 避免了内存的拷贝.
- 通过
FileRegion
包装的FileChannel.tranferTo
实现文件传输, 可以直接将文件缓冲区的数据发送到目标Channel
, 避免了传统通过循环 write 方式导致的内存拷贝问题.
下面我们就来简单了解一下这几种常见的零拷贝操作.
通过 CompositeByteBuf 实现零拷贝
假设我们有一份协议数据, 它由头部和消息体组成, 而头部和消息体是分别存放在两个 ByteBuf 中的, 即:
ByteBuf header = ...
ByteBuf body = ...
我们在代码处理中, 通常希望将 header 和 body 合并为一个 ByteBuf, 方便处理, 那么通常的做法是:
ByteBuf allBuf = Unpooled.buffer(header.readableBytes() + body.readableBytes());
allBuf.writeBytes(header);
allBuf.writeBytes(body);
可以看到, 我们将 header 和 body 都拷贝到了新的 allBuf 中了, 这无形中增加了两次额外的数据拷贝操作了.
那么有没有更加高效优雅的方式实现相同的目的呢? 我们来看一下 CompositeByteBuf
是如何实现这样的需求的吧.
ByteBuf header = ...
ByteBuf body = ...
CompositeByteBuf compositeByteBuf = Unpooled.compositeBuffer();
compositeByteBuf.addComponents(true, header, body);
上面代码中, 我们定义了一个 CompositeByteBuf
对象, 然后调用
public CompositeByteBuf addComponents(boolean increaseWriterIndex, ByteBuf... buffers) {
...
}
方法将 header
与 body
合并为一个逻辑上的 ByteBuf, 即:
不过需要注意的是, 虽然看起来 CompositeByteBuf 是由两个 ByteBuf 组合而成的, 不过在 CompositeByteBuf 内部, 这两个 ByteBuf 都是单独存在的, CompositeByteBuf 只是逻辑上是一个整体.
上面 CompositeByteBuf
代码还以一个地方值得注意的是, 我们调用 addComponents(boolean increaseWriterIndex, ByteBuf... buffers)
来添加两个 ByteBuf, 其中第一个参数是 true
, 表示当添加新的 ByteBuf 时, 自动递增 CompositeByteBuf 的 writeIndex
.
如果我们调用的是
compositeByteBuf.addComponents(header, body);
那么其实 compositeByteBuf
的 writeIndex
仍然是0, 因此此时我们就不可能从 compositeByteBuf
中读取到数据, 这一点希望大家要特别注意.
除了上面直接使用 CompositeByteBuf
类外, 我们还可以使用 Unpooled.wrappedBuffer
方法, 它底层封装了 CompositeByteBuf
操作, 因此使用起来更加方便:
ByteBuf header = ...
ByteBuf body = ...
ByteBuf allByteBuf = Unpooled.wrappedBuffer(header, body);
通过 wrap 操作实现零拷贝
例如我们有一个 byte 数组, 我们希望将它转换为一个 ByteBuf 对象, 以便于后续的操作, 那么传统的做法是将此 byte 数组拷贝到 ByteBuf 中, 即:
byte[] bytes = ...
ByteBuf byteBuf = Unpooled.buffer();
byteBuf.writeBytes(bytes);
显然这样的方式也是有一个额外的拷贝操作的, 我们可以使用 Unpooled 的相关方法, 包装这个 byte 数组, 生成一个新的 ByteBuf 实例, 而不需要进行拷贝操作. 上面的代码可以改为:
byte[] bytes = ...
ByteBuf byteBuf = Unpooled.wrappedBuffer(bytes);
可以看到, 我们通过 Unpooled.wrappedBuffer
方法来将 bytes 包装成为一个 UnpooledHeapByteBuf 对象, 而在包装的过程中, 是不会有拷贝操作的. 即最后我们生成的生成的 ByteBuf 对象是和 bytes 数组共用了同一个存储空间, 对 bytes 的修改也会反映到 ByteBuf 对象中.
Unpooled 工具类还提供了很多重载的 wrappedBuffer 方法:
public static ByteBuf wrappedBuffer(byte[] array)
public static ByteBuf wrappedBuffer(byte[] array, int offset, int length)
public static ByteBuf wrappedBuffer(ByteBuffer buffer)
public static ByteBuf wrappedBuffer(ByteBuf buffer)
public static ByteBuf wrappedBuffer(byte[]... arrays)
public static ByteBuf wrappedBuffer(ByteBuf... buffers)
public static ByteBuf wrappedBuffer(ByteBuffer... buffers)
public static ByteBuf wrappedBuffer(int maxNumComponents, byte[]... arrays)
public static ByteBuf wrappedBuffer(int maxNumComponents, ByteBuf... buffers)
public static ByteBuf wrappedBuffer(int maxNumComponents, ByteBuffer... buffers)
这些方法可以将一个或多个 buffer 包装为一个 ByteBuf 对象, 从而避免了拷贝操作.
通过 slice 操作实现零拷贝
slice 操作和 wrap 操作刚好相反, Unpooled.wrappedBuffer
可以将多个 ByteBuf 合并为一个, 而 slice 操作可以将一个 ByteBuf 切片
为多个共享一个存储区域的 ByteBuf 对象.
ByteBuf 提供了两个 slice 操作方法:
public ByteBuf slice();
public ByteBuf slice(int index, int length);
不带参数的 slice
方法等同于 buf.slice(buf.readerIndex(), buf.readableBytes())
调用, 即返回 buf 中可读部分的切片. 而 slice(int index, int length)
方法相对就比较灵活了, 我们可以设置不同的参数来获取到 buf 的不同区域的切片.
下面的例子展示了 ByteBuf.slice
方法的简单用法:
ByteBuf byteBuf = ...
ByteBuf header = byteBuf.slice(0, 5);
ByteBuf body = byteBuf.slice(5, 10);
用 slice
方法产生 header 和 body 的过程是没有拷贝操作的, header 和 body 对象在内部其实是共享了 byteBuf 存储空间的不同部分而已. 即:
通过 FileRegion 实现零拷贝
Netty 中使用 FileRegion 实现文件传输的零拷贝, 不过在底层 FileRegion 是依赖于 Java NIO FileChannel.transfer
的零拷贝功能.
首先我们从最基础的 Java IO 开始吧. 假设我们希望实现一个文件拷贝的功能, 那么使用传统的方式, 我们有如下实现:
public static void copyFile(String srcFile, String destFile) throws Exception {
byte[] temp = new byte[1024];
FileInputStream in = new FileInputStream(srcFile);
FileOutputStream out = new FileOutputStream(destFile);
int length;
while ((length = in.read(temp)) != -1) {
out.write(temp, 0, length);
}
in.close();
out.close();
}
上面是一个典型的读写二进制文件的代码实现了. 不用我说, 大家肯定都知道, 上面的代码中不断中源文件中读取定长数据到 temp 数组中, 然后再将 temp 中的内容写入目的文件, 这样的拷贝操作对于小文件倒是没有太大的影响, 但是如果我们需要拷贝大文件时, 频繁的内存拷贝操作就消耗大量的系统资源了.
下面我们来看一下使用 Java NIO 的 FileChannel
是如何实现零拷贝的:
public static void copyFileWithFileChannel(String srcFileName, String destFileName) throws Exception {
RandomAccessFile srcFile = new RandomAccessFile(srcFileName, "r");
FileChannel srcFileChannel = srcFile.getChannel();
RandomAccessFile destFile = new RandomAccessFile(destFileName, "rw");
FileChannel destFileChannel = destFile.getChannel();
long position = 0;
long count = srcFileChannel.size();
srcFileChannel.transferTo(position, count, destFileChannel);
}
可以看到, 使用了 FileChannel
后, 我们就可以直接将源文件的内容直接拷贝(transferTo
) 到目的文件中, 而不需要额外借助一个临时 buffer, 避免了不必要的内存操作.
有了上面的一些理论知识, 我们来看一下在 Netty 中是怎么使用 FileRegion
来实现零拷贝传输一个文件的:
@Override
public void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception {
RandomAccessFile raf = null;
long length = -1;
try {
// 1. 通过 RandomAccessFile 打开一个文件.
raf = new RandomAccessFile(msg, "r");
length = raf.length();
} catch (Exception e) {
ctx.writeAndFlush("ERR: " + e.getClass().getSimpleName() + ": " + e.getMessage() + '\n');
return;
} finally {
if (length < 0 && raf != null) {
raf.close();
}
}
ctx.write("OK: " + raf.length() + '\n');
if (ctx.pipeline().get(SslHandler.class) == null) {
// SSL not enabled - can use zero-copy file transfer.
// 2. 调用 raf.getChannel() 获取一个 FileChannel.
// 3. 将 FileChannel 封装成一个 DefaultFileRegion
ctx.write(new DefaultFileRegion(raf.getChannel(), 0, length));
} else {
// SSL enabled - cannot use zero-copy file transfer.
ctx.write(new ChunkedFile(raf));
}
ctx.writeAndFlush("\n");
}
上面的代码是 Netty 的一个例子, 其源码在 netty/example/src/main/java/io/netty/example/file/FileServerHandler.java
可以看到, 第一步是通过 RandomAccessFile
打开一个文件, 然后 Netty 使用了 DefaultFileRegion
来封装一个 FileChannel
即:
new DefaultFileRegion(raf.getChannel(), 0, length)
当有了 FileRegion 后, 我们就可以直接通过它将文件的内容直接写入 Channel 中, 而不需要像传统的做法: 拷贝文件内容到临时 buffer, 然后再将 buffer 写入 Channel. 通过这样的零拷贝操作, 无疑对传输大文件很有帮助.
Netty中ByteBuf 的零拷贝的更多相关文章
- Netty中ByteBuf的引用计数线程安全的实现原理
原文链接 Netty中ByteBuf的引用计数线程安全的实现原理 代码仓库地址 ByteBuf 实现了ReferenceCounted 接口,实现了引用计数接口,该接口的retain(int) 方法为 ...
- 对于 Netty ByteBuf 的零拷贝(Zero Copy) 的理解
此文章已同步发布在我的 segmentfault 专栏. 根据 Wiki 对 Zero-copy 的定义: "Zero-copy" describes computer opera ...
- Netty源码解析 -- 零拷贝机制与ByteBuf
本文来分享Netty中的零拷贝机制以及内存缓冲区ByteBuf的实现. 源码分析基于Netty 4.1.52 Netty中的零拷贝 Netty中零拷贝机制主要有以下几种 1.文件传输类DefaultF ...
- Netty基础系列(5) --零拷贝彻底分析
前言 上一节(堆外内存与零拷贝)当中我们从jvm堆内存的视角解释了一波零拷贝原理,但是仅仅这样还是不够的. 为了彻底搞懂零拷贝,我们趁热打铁,接着上一节来继续讲解零拷贝的底层原理. 感受一下NIO的速 ...
- 深入了解Netty【二】零拷贝
引言 以下翻译自:Zero Copy I: User-Mode Perspective 零拷贝是什么? 为了更好地理解问题的解决方案,我们首先需要理解问题本身.让我们来看看什么是参与网络服务器的简单过 ...
- Netty:Netty中的零拷贝(Zero Copy)
零复制概念: " 零复制"描述了计算机操作,其中CPU不执行将数据从一个存储区复制到另一个存储区的任务.通过网络传输文件时,通常用于节省CPU周期和内存带宽. WIKI的定义中,我 ...
- 感悟优化——Netty对JDK缓冲区的内存池零拷贝改造
NIO中缓冲区是数据传输的基础,JDK通过ByteBuffer实现,Netty框架中并未采用JDK原生的ByteBuffer,而是构造了ByteBuf. ByteBuf对ByteBuffer做了大量的 ...
- BAT面试必问细节:关于Netty中的ByteBuf详解
在Netty中,还有另外一个比较常见的对象ByteBuf,它其实等同于Java Nio中的ByteBuffer,但是ByteBuf对Nio中的ByteBuffer的功能做了很作增强,下面我们来简单了解 ...
- Linux 中的零拷贝技术,第 1 部分
概述 本系列由两篇文章组成,介绍了当前用于 Linux 操作系统上的几种零拷贝技术,简单描述了各种零拷贝技术的实现,以及它们的特点和适用场景.本文是本系列文章的第一部分,主要是介绍一些零拷贝技术的相关 ...
随机推荐
- Redis 持久化之RDB和AOF
Redis 持久化之RDB和AOF Redis 有两种持久化方案,RDB (Redis DataBase)和 AOF (Append Only File).如果你想快速了解和使用RDB和AOF,可以直 ...
- Netty 系列七(那些开箱即用的 ChannelHandler).
一.前言 Netty 为许多通用协议提供了编解码器和处理器,几乎可以开箱即用, 这减少了你在那些相当繁琐的事务上本来会花费的时间与精力.另外,这篇文章中,就不涉及 Netty 对 WebSocket协 ...
- spring-framework-中文文档二:Bean概述
Spring IoC容器管理一个或多个bean.这些bean是使用您提供给容器的配置元数据创建的,例如,以XML <bean/>定义的形式 . 在容器本身中,这些bean定义被表示为 Be ...
- JavaScript是如何工作的:Web Workers的构建块 + 5个使用他们的场景
摘要: 理解Web Workers. 原文:JavaScript是如何工作的:Web Workers的构建块 + 5个使用他们的场景 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 这 ...
- js 毫秒转天时分秒
formatDuring: function(mss) { var days = parseInt(mss / (1000 * 60 * 60 * 24)); var hours = parseInt ...
- Nginx 配置下载附件让浏览器提示用户是否保存
Nginx配置下载附件让浏览器提示用户是否保存 by:授客 QQ:1033553122 测试环境 nginx-1.10.0 问题描述: 前端页面,IE11浏览器下请求下载附件模板,针对xls ...
- github上传流程图记录
参考文章 http://blog.csdn.net/laozitianxia/article/details/50682100 首先你得先创建仓库 为仓库取一个名字,然后点击创建就会有一个仓库了, g ...
- Android dp、dip、dpi、px、sp简介及相关换算,及其应用实例
屏幕分辨率:在x y轴上的像素点数.单位是px,1px=1个像素点.一般以 纵向像素×横向像素 表示,如1920*1080dpi--------------------------每英寸上 ...
- 应用生命周期终极 DevOps 工具包
[编者按]本文作者为 Kevin Goldberg,主要介绍了在开发.运营应用的完整生命周期当中,可能用到的 DevOps 工具大集合.文章系 OneAPM 工程师编译整理. DevOps工具包中合适 ...
- Linux中Root密码破解
1.开机后在选择菜单时按下e进入编辑模式 2.选择linux16这一行,在行末尾添加 rd.break 3.然后Ctrl+x执行.然后进入shell界面: 4.设置密码: 1.重新挂载根目录为读写模式 ...