A1043. Is It a Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.
Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first print in a line "YES" if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or "NO" if not. Then if the answer is "YES", print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
- 7
- 8 6 5 7 10 8 11
Sample Output 1:
- YES
- 5 7 6 8 11 10 8
Sample Input 2:
- 7
- 8 10 11 8 6 7 5
Sample Output 2:
- YES
- 11 8 10 7 5 6 8
Sample Input 3:
- 7
- 8 6 8 5 10 9 11
Sample Output 3:
- NO
- #include<cstdio>
- #include<iostream>
- #include<vector>
- using namespace std;
- typedef struct NODE{
- struct NODE *lchild, *rchild;
- int key;
- }node;
- int N;
- vector<int> keys, pre, preM, ans;
- void insert(node* &root, int key){
- if(root == NULL){
- root = new node;
- root->key = key;
- root->lchild = NULL;
- root->rchild = NULL;
- return;
- }
- if(key >= root->key){
- insert(root->rchild, key);
- }else{
- insert(root->lchild, key);
- }
- }
- node* create(vector<int> &keys){
- node* root = NULL;
- for(int i = ; i < N; i++)
- insert(root, keys[i]);
- return root;
- }
- void preOrder(node* root){
- if(root == NULL)
- return;
- pre.push_back(root->key);
- preOrder(root->lchild);
- preOrder(root->rchild);
- }
- void preOrder2(node* root){
- if(root == NULL)
- return;
- preM.push_back(root->key);
- preOrder2(root->rchild);
- preOrder2(root->lchild);
- }
- void postOrder(node* root){
- if(root == NULL)
- return;
- postOrder(root->lchild);
- postOrder(root->rchild);
- ans.push_back(root->key);
- }
- void postOrder2(node* root){
- if(root == NULL)
- return;
- postOrder2(root->rchild);
- postOrder2(root->lchild);
- ans.push_back(root->key);
- }
- int main(){
- int temp;
- scanf("%d", &N);
- for(int i = ; i < N; i++){
- scanf("%d", &temp);
- keys.push_back(temp);
- }
- node* root = create(keys);
- preOrder(root);
- preOrder2(root);
- if(pre == keys ){
- printf("YES\n");
- postOrder(root);
- for(int i = ; i < N; i++){
- if(i != N - )
- printf("%d ", ans[i]);
- else printf("%d", ans[i]);
- }
- }else if(preM == keys){
- printf("YES\n");
- postOrder2(root);
- for(int i = ; i < N; i++){
- if(i != N - )
- printf("%d ", ans[i]);
- else printf("%d", ans[i]);
- }
- }else {
- printf("NO\n");
- }
- cin >> N;
- return ;
- }
总结:
1、题意:给出一组key,先按照给出的顺序建立搜索树。再对其本身和他的镜像进行先序遍历,看看是否先序遍历的序列和给出的一组key顺序相同。
2、对逆转的镜像树,可以不必实际上逆转该树,而仅仅在先序和后序访问左右子树时,从原来的先左后右变成先右后左。
3、两个vector在元素为int时可以直接比较。
4、注意字符串不要打错,“NO”打成“No”结果检查好久。
5、本题中允许搜索树中有重复的key,在定义中右子树大于等于根节点。 recursively:递归地
A1043. Is It a Binary Search Tree的更多相关文章
- A1043 Is It a Binary Search Tree (25 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- A1043 Is It a Binary Search Tree (25 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT甲级——A1043 Is It a Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT_A1043#Is It a Binary Search Tree
Source: PAT A1043 Is It a Binary Search Tree (25 分) Description: A Binary Search Tree (BST) is recur ...
- 1043 Is It a Binary Search Tree (25 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
随机推荐
- MyCat数据库中间件 - 分库
MyCat MyCat用于解耦分布式数据库与java,比如分库分表以后,需要查询某条数据时,需要java根据需要查的数据先计算去哪个库查,然而有了Mycat就不用自己计算怎么存储,怎么查询了.MyCa ...
- 1、通过eureka创建注册中心
第一个demo(用户需要调用电影服务) 1.创建项目 new starter project 勾选上Eureka Server 2.编写application.yml #配置端口 server: po ...
- python设计模式第二十天【模版方法模式】
1.应用场景 (1)具有相同的操作,但是步骤中具有不同的操作细节 2.代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ from abc impor ...
- python数据结构与算法第四天【代码执行时间测试模块】
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ from timeit import Timer def foo(): ''' 使用append方式向列表添加 ...
- 解决mybatis generator警告Cannot obtain primary key information from the database, generated objects may be incomplete
使用 mybatis generator 生成pojo.dao.mapper时 经常出现 Cannot obtain primary key information from the database ...
- 九、.net core用orm继承DbContext(数据库上下文)方式操作数据库
一.创建一个DataContext普通类继承DbContext 安装程序集:Pomelo.EntityFrameworkCore.MySql 二.配置连接字符串(MySql/SqlServer都 ...
- Microsoft Bot Framework with LUIS
今年微软的编程之美的主题是“对话即平台”,“人工智能”,要求参赛选手用到Bot Framework与Cognitive Services. 大多数人应该对这两个技术都不怎么熟悉吧,我就在这里写写自己所 ...
- name设置id的方式 解决多个单选域冲突现象 同时有利于从动态网页取值
- xx.hbm.xml中相关重要的配置
1.<!-- 指定hibernate操作数据库时的隔离级别 #hibernate.connection.isolation 1|2|4|8 ...
- Nginx 针对上游服务器缓存
L:99 nginx缓存 : 定义存放缓存的载体 proxy_cache 指令 Syntax: proxy_cache zone | off; Default: proxy_cache off; Co ...