[luogu4018][Roy&October之取石子]
思路
这个题思路挺巧妙的。
情况一:
首先如果这堆石子的数量是1~5,那么肯定是先手赢。因为先手可以直接拿走这些石子。如果石子数量恰好是6,那么肯定是后手赢。因为先手无论怎样拿也无法直接拿走六个石子。
情况二:
考虑继续推广,如果石子数是7~11,那么先手也能赢。因为先手可以先拿成6,然后就变成了情况1。如果石子数是12,那么一定是后手赢。因为根据上面讨论,当石子数量为6的时候,此时的先手一定输。如果石子数量为12,那么现在的人无论如何也无法拿成6,所以肯定会输。
结论
如果石子数是6的倍数,那么此时的先手会输。如果不是6的倍数,那么现在的先手可以把石子拿成6的倍数,并且另一个人变成先手。所以此时后手赢
代码
#include<cstdio>
#include<iostream>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long ll;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int main() {
int t = read();
while(t--) {
ll n = read();
if(!(n % 6)) puts("Roy wins!");
else puts("October wins!");
}
return 0;
}
每篇一言
一旦下雨,路上就充满肮脏和泥泞 ——从你的全世界路过
[luogu4018][Roy&October之取石子]的更多相关文章
- 洛谷 P4018 Roy&October之取石子
洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...
- 洛谷——P4018 Roy&October之取石子
P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...
- 洛谷P4860 Roy&October之取石子II 题解 博弈论
题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...
- 洛谷 Roy&October之取石子
题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...
- P4018 Roy&October之取石子
题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...
- 洛谷P4018 Roy&October之取石子
题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...
- luogu P4018 Roy&October之取石子(博弈论)
题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...
- 洛谷P4018 Roy&October之取石子 题解 博弈论
题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...
- [luogu4860][Roy&October之取石子II]
题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...
随机推荐
- jQuery-mobilevalidate使用 的一些心得,小小总结
在做M站时比较纠结的是表单验证,不像pc端,移动端的验证要求插件更小更轻量,更加灵活,说不定是冒气泡的报错提示?! 介绍一款好用的移动端的表单验证插件:jQuery-mobilevalidate: 代 ...
- Android——Activity的简绍
Activity Activity的运行机制其实和JavaEE中的servlet很像,而我们的Android系统也就相当与其servlet容器,Activity在其中进行创建实例.初始化.运行.销毁等 ...
- LeetCode & Online Programming Learning Platform
leetcode LeetCode is the best platform to help you enhance your skills, expand your knowledge and pr ...
- JQ查找到带有某个字符,并起类名,然后替换这个某个字符
<script> setTimeout("asdasd()",1000); //定时器是为了防止其他JS影响到它,可以不加 function asdasd() { $( ...
- Python——SMTP发送邮件
一.定义 SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.python的smtplib ...
- 待解决ava.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method)
java.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method) at ja ...
- hdu-5536(字典树)
题意:给你n个数,让你在n个数中选三个,使得(a1+a2)^a3的值最大,a1!=a2!=a3(下标不等于): 解题思路:01字典树可以写,因为数据小,我们可以先把n个数建一颗字典树,然后两边for找 ...
- python之旅六【第七篇】面向对象
面向对象三大特性 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强... 面向对象编程 ...
- Codeforces Round #429 Div. 1
A:甚至连题面都不用仔细看,看一下样例就知道是要把大的和小的配对了. #include<iostream> #include<cstdio> #include<cmath ...
- 第三十四天 UDP协议 并发编程
一.今日内容 1.UDP协议 2.并发编程 操作系统的发展史 多道技术 进程 线程 IO模型 socketserver 案例:文件上传下载 元类 单例 logging filter 二.TCP半连接池 ...