分解质因数FZU - 1075
题目简述:就是给一个数,把他拆分成多个素数的乘积,这正好是算术基本定理。本题我的解决方法是埃氏素数筛+质因数保存。。。开始T掉了,是因为我在最后枚举了素数,保存他们的次数,然后两次for去查询他们的次数这样需要遍历前面所有素数。显的十分浪费时间,因为如果给的数非常大,并且次数小的次数很多那么我们外面的第一层FOR就是N第二层是一个遍历内部次数输出也达到挺大程度(素数小的并且多的化N*M会很大)加上T的话很可能会超时,其实直接保存质因数在另一个素数就可以了,然后遍历输出即可(在此警醒自己,做题不要拿着题目就开做直接暴力,要精简算法的复杂程度,理清思路,这样避免后面来改动)
算术基本定理可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积
最后上代码
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int MAXN=;
bool isPrim[MAXN];
int prime[MAXN];
int cnt[MAXN];
int sum,cnt1;
void initPrime()
{
int i;
memset(isPrim,,sizeof());
isPrim[]=;
isPrim[]=;
int k=;
for (i=; i<MAXN; i++)
{
if (!isPrim[i])
{
prime[k++]=i;
int j=;
while (i*j<MAXN)
{
isPrim[i*j]=;
j++;
}
}
}
sum=k;
return;
}
void sovl(int x)
{
for (int i=; ; i++)
{
if (prime[i]>x)break;
while (x % prime[i]==)
{
cnt1++;
cnt[cnt1]=prime[i];
x=x/prime[i];
}
}
return;
}
int main()
{
initPrime();
int t,num,time;
scanf("%d",&t);
while (t--)
{
memset(cnt,,sizeof(cnt));
scanf("%d",&num);
time=;
cnt1=;
sovl(num);
for (int i=; i<=cnt1; i++)
{
time++;
if (time==)
{
printf("%d",cnt[i]);
}
else
printf("*%d",cnt[i]);
}
printf("\n");
}
return ;
}
分解质因数FZU - 1075的更多相关文章
- java分解质因数
package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...
- 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)
1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...
- 【python】将一个正整数分解质因数
def reduceNum(n): '''题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5''' print '{} = '.format(n), : print 'Pleas ...
- light oj 1236 分解质因数
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...
- 【基础数学】质数,约数,分解质因数,GCD,LCM
1.质数: 质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数. 2.约数: 如 ...
- 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...
- cdoj 1246 每周一题 拆拆拆~ 分解质因数
拆拆拆~ Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1246 Descri ...
- hdu 5428 The Factor 分解质因数
The Factor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...
- UVa 10622 (gcd 分解质因数) Perfect P-th Powers
题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...
随机推荐
- C#核心基础--类的声明
C#核心基础--类的声明 类是使用关键字 class 声明的,如下面的示例所示: 访问修饰符 class 类名 { //类成员: // Methods, properties, fields, eve ...
- mysql replace into 的使用情况
replace into的存在的几种情况 当表存在主键并且存在唯一键的时候 如果只是主键冲突 mysql> select * from auto; +----+---+------+------ ...
- 多文档界面的实现(DotNetBar的superTabControl)
private void FormMain_Load(object sender, EventArgs e) { superTabControl2.Tabs.Clear(); timer1.Start ...
- jQuery设置元素的readonly和disabled属性
jQuery的api中提供了对元素应用disabled和readonly属性的方法,如下: 1.readonly $('input').attr("readonly",&qu ...
- 远程连接ubuntu的MongoDB遇到的坑
首先连接不上,先查看云服务器上的安全组是否添加了对应的端口 如果打开了,那么久查看MongoDB是否允许远程连接 # mongod.conf # for documentation of all op ...
- Linux之文档与目录结构
Linux文件系统结构 Linux目录结构的组织形式和Windows有很大的不同.首先Linux没有“盘(C盘.D盘.E盘)”的概念.已经建立文件系统的硬盘分区被挂载到某一个目录下,用户通过操作目录来 ...
- huapin
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- (转)Spring Boot 2 (七):Spring Boot 如何解决项目启动时初始化资源
http://www.ityouknow.com/springboot/2018/05/03/spring-boot-commandLineRunner.html 在我们实际工作中,总会遇到这样需求, ...
- 设计模式のFlyweight(享元模式)----结构模式
一.产生背景 享元模式:它使用共享物件,用来尽可能减少内存使用量以及分享资讯给尽可能多的相似物件:它适合用于只是因重复而导致使用无法令人接受的大量内存的大量物件.通常物件中的部分状态是可以分享.常见做 ...
- 用Python调用阿里云的短信接口
#!/usr/bin/env python# -*- coding:utf-8 -*-# Author:Frank import uuidimport datetimeimport hmacimpor ...