首先,我们先要读入数据:

然后检查数据出现的问题:

1.没有表头,增加表头

2.去除重复值:

df.duplicate()使用布尔数据查看数据表中是否有重复值,df.drop_duplicates(),删去重复的值

这里有两点需要说明:第一,数据表中两个条目间所有列的内容都相等时duplicated才会判断为重复值。(Duplicated也可以单独对某一列进行重复值判断)。第二,duplicated支持从前向后(first),

和从后向前(last)两种重复值查找模式。默认是从前向后进行重复值的查找和判断。换句话说就是将后出现的相同条件判断为重复值。

df.drop_duplicates(),删去重复的值

 Pandas中查找数据表中空值的函数有两个,一个是函数isnull,如果是空值就显示True。另一个函数notnull正好相反,如果是空值就显示False。

以下两个函数的使用方法以及通过isnull函数获得的空值数量。

对于空值有两种处理的方法,第一种是使用fillna函数对空值进行填充,可以选择填充0值或者其他任意值。第二种方法是使用dropna函数直接将包含空值的数据删除。

 df.fillna(0),      df.dropna()

还有一种经常的用法是使用平均值代替,比如假设loan amount列中与空值,我们可以采用平均值代表空值

df['loan amount']=df['loan amount'].fillna(df['loan amount'].mean())

接下来换索引:

用法是df.set_index('column')

数据间的空格:

空格会影响我们后续会数据的统计和计算。从下面的结果中就可以看出空格对于常规的数据统计造成的影响。

df['LOAN_Status'].value_counts()

 

Python中去除空格的方法有三种,第一种是去除数据两边的空格,第二种是单独去除左边的空格,第三种是单独去除右边的空格。

df['LOAN_Status']=df['LOAN_Status'].map(str.strip)#删除左右俩边的空格
df['LOAN_Status']=df['LOAN_Status'].map(str.lstrip)#删除左边空格
df['LOAN_Status']=df['LOAN_Status'].map(str.rstrip)#删除右边空格

大小写转换

大小写转换的方法也有三种可以选择,分别为全部转换为大写,全部转换为小写,和转换为首字母大写。

df['LOAN_Status']=df['LOAN_Status'].map(str.upper)#全部大写
df['LOAN_Status']=df['LOAN_Status'].map(str.lower)#全部小写
df['LOAN_Status']=df['LOAN_Status'].map(str.title)#首字母写

 最后我们还需要对数据表中关键字段的内容进行检查,确保关键字段中内容的统一。主要包括数据是否全部为字符,字母或数字。

df['weight'].apply(lambda x:
x.isalpha())#检查该列是否全部为字符

df['weight'].apply(lambda x:
x.isalnum())#检查该列是否全部为数字
df['weight'].apply(lambda x:
x.isalpha())#检查该列是否全部为字母

第一步是更改和规范数据格式,所使用的函数是astype。下面是更改数据格式的代码

df['loan amount']=df['loan amount'].astype(np.int64)#数据格式处理
df['register_date']=pd.to_datetime(df['register_date'])#日期格式的数据需要使用to_datatime函数进行处理

数据中的异常和极端值

用describe函数可以生成描述统计结果。其中我们主要关注最大值(max)和最小值(min)情况。

使用平均值代替,公式:

df.replace([23],df['loan amount'].mean())

数据分组

把weight数据进行分组

bins=[30,35,40,45]
group_names=['A','B','C','D']
df['categories']= pd.cut(df['weight'],bins, labels=group_names)

数据分列

pandas数据清洗策略2的更多相关文章

  1. pandas数据清洗策略1

    Pandas常用的数据清洗5大策略如下: 1.删除 DataFrame 中的不必要 columns 2.改变 DataFrame 的 index 3.使用 .str() 方法来清洗 columns 4 ...

  2. 2.pandas数据清洗

    pandas是用于数据清洗的库,安装配置pandas需要配置许多依赖的库,而且安装十分麻烦. 解决方法:可以用Anaconda为开发环境,Anaconda内置了许多有关数据清洗和算法的库. 1.安装p ...

  3. Python | Pandas数据清洗与画图

    准备数据 2016年北京PM2.5数据集 数据源说明:美国驻华使馆的空气质量检测数据 数据清洗 1. 导入包 import numpy as np import matplotlib.pyplot a ...

  4. Pandas 数据清洗常用篇

    一.缺失值 sklearn中的preprocessing下有imputer,可进官方文档参考.这里主讲pandas. 拿到数据,一般先检查是否有缺失值,用isnul()或notnull(). 再决定d ...

  5. pandas数据清洗

    1.我已安装好Anavonda3.5.所以我只用打开"jupyter notebook",然后打开浏览器 然后点击右侧的“new",然后打开python3

  6. 数据清洗记录,pandas

    pandas数据清洗:http://www.it165.net/pro/html/201405/14269.html data=pd.Series([1,2,3,4]) data.replace([1 ...

  7. Pandas模块

    前言: 最近公司有数据分析的任务,如果使用Python做数据分析,那么对Pandas模块的学习是必不可少的: 本篇文章基于Pandas 0.20.0版本 话不多说社会你根哥!开干! pip insta ...

  8. Python数据处理常用工具(pandas)

    目录 数据清洗的常用工具--Pandas 数据清洗的常用工具 Pandas常用数据结构series和方法 Pandas常用数据结构dataframe和方法 常用方法 数据清洗的常用工具--Pandas ...

  9. Python 3爬虫、数据清洗与可视化实战PDF高清完整版免费下载|百度云盘

    百度云盘:Python 3爬虫.数据清洗与可视化实战PDF高清完整版免费下载 提取码: 内容简介 <Python 3爬虫.数据清洗与可视化实战>是一本通过实战教初学者学习采集数据.清洗和组 ...

随机推荐

  1. Cisco 日常巡检命令

    https://www.cnblogs.com/qzqdy/p/8116903.html 日常排错命令6 交换机的前面板有几个指示灯,用于监控系统的活动和性能.这些指示灯称之为发二极管(LED) 1. ...

  2. stored information about method csdn

    Eclipse编译时保留方法的形参 Window -> Preferences -> Java -> Compiler. 选中Store information about meth ...

  3. Javascript_06_表单验证(离开单项,输入框后提示信息)

    Javascript_06_ 表单验证(离开单项,输入框后提示信息) 说明:对于必须输入的入力框,光标离开(使用 onblur方法)时进行检查.假如有错,红色的提示信息直接在该画面的这个输入框的后面显 ...

  4. wordpress安装后访问博客只显示文字的解决办法

    按着网上的教程,买了腾讯云服务器,上面的镜像已经安装好WordPress了.但是发现并不像网上十分钟搭建个人站点等的写的那么简单.遇到了一些问题,下面来详细讲一讲. 首先是用ip地址不能直接访问服务器 ...

  5. February 12th, 2018 Week 7th Monday

    One man's fault is another man's lesson. 前车之覆,后车之鉴. We make mistakes every day, large or small, fail ...

  6. IntelliJ IDEA 创建Spring+SpringMVC+hibernate+maven项目

    第一步: 新建maven管理的web项目, 具体步骤参考:http://www.cnblogs.com/gczmn/p/8693734.html 第二步: 创建项目结构, 完整项目结构如下: 第三步: ...

  7. 线程--继承Thread

    首先继承Thread类,然后重写Thread类的run()方法. Thread类的子类的对象调用start()方法,然后虚拟机就会调用该线程的run()方法. 当程序执行到start()方法时,线程启 ...

  8. TestFlight的使用--再也不用担心环境打错了

    转赞请注明出处:http://www.cnblogs.com/zhanggui/p/7039651.html 一.前言 在iOS开发过程中,难免会遇到各种Bug.因此你会去解决所有的Bug,然后提交到 ...

  9. 更高的压缩比,更好的性能–使用ORC文件格式优化Hive

    http://lxw1234.com/archives/2016/04/630.htm 关键字:orc.index.hive Hive从0.11版本开始提供了ORC的文件格式,ORC文件不仅仅是一种列 ...

  10. vue源码分析—数据绑定

    放进沙里附件拉萨就发牢骚:剑飞:啊撒