洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
题意
Sol
打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\)
老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了
上面的是\(O(Tk^2)\)的
下面是\(O(Tk^3)\)的
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 66, mod = 1e9 + 7;
inline LL read() {
char c = getchar(); LL x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '0') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
LL N, M, a[MAXN], tot, inv[3601];
LL add(LL x, LL y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
void add2(LL &x, LL y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
LL mul(LL x, LL y) {
return 1ll * x * y % mod;
}
LL fp(LL a, LL p) {
LL base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
LL x[MAXN], y[MAXN], fac[MAXN], ifac[MAXN], pre[MAXN], suf[MAXN];
LL get(LL N, LL M) {// \sum_{i=1}^n i^m
//printf("%d %d\n", N, M);
LL Lim = M + 1, ans = 0; memset(y, 0, sizeof(y));
for(int i = 1; i <= Lim; i++) add2(y[i], add(y[i - 1], fp(i, M)));
pre[0] = N; suf[Lim + 1] = 1;
for(int i = 1; i <= Lim; i++) pre[i] = mul(pre[i - 1], add(N, -i));
for(int i = Lim; i >= 1; i--) suf[i] = mul(suf[i + 1], add(N, -i));
for(int i = 0; i <= Lim; i++) {
LL up = mul(y[i], mul(pre[i - 1], suf[i + 1])),
down = mul(ifac[i], ifac[Lim - i]);
if((Lim - i) & 1) down = mod - down;
//printf("%d %d\n", up, down);
ans = add(ans, mul(up, down));
}
return ans;
}
void solve() {
N = read(); M = read();
memset(a, 0, sizeof(a));
LL ans = 0;
for(LL i = 1; i <= M; i++) a[i] = read(); a[++M] = ++N;
sort(a + 1, a + M + 1);
for(LL i = 1; i <= M; i++) {
for(LL j = i; j <= M; j++) ans = add(ans, add(get(a[j] - 1, M ), -get(a[j - 1], M)));
for(LL j = i + 1; j <= M; j++) a[j] = add(a[j], -a[i]); a[i] = 0;
}
printf("%lld\n", ans);
}
int main() {
inv[1] = 1; for(int i = 2; i <= 3600; i++) inv[i] = mul((mod - mod / i), inv[mod % i]);
fac[0] = 1; for(int i = 1; i <= 60; i++) fac[i] = mul(i, fac[i - 1]);
ifac[60] = fp(fac[60], mod - 2);
for(int i = 60; i >= 1; i--) ifac[i - 1] = mul(ifac[i], i);
//cout << get(10, 2) << endl;
for(LL T = read();T--; solve());
return 0;
}
/*
1
1044536146 2
883276404
640705454
*/
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 103, mod = 1e9 + 7;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int N, M, K, f[MAXN][MAXN], C[MAXN][MAXN], U[MAXN], R[MAXN], g[MAXN];
int get(int U, int R) {
memset(g, 0, sizeof(g));
for(int i = 1; i <= MAXN - 1; i++)
for(int k = 1; k <= i; k++)
g[i] = add(g[i], mul(fp(k, N - R), fp(i - k, R - 1)));
int ans = 0;
for(int i = 1; i <= MAXN - 1; i++) {
int up = 1, down = 1;
for(int j = 1; j <= MAXN - 1; j++) {
if(i == j) continue;
up = mul(up, add(U, -j));
down = mul(down, add(i, -j));
}
ans = add(ans, mul(g[i], mul(up, fp(down, mod - 2))));
}
return ans;
}
int main() {
//freopen("a.in", "r", stdin);
N = read(); M = read(); K = read();
for(int i = 0; i <= N; i++) {
C[i][0] = C[i][i] = 1;
for(int j = 1; j < i; j++) C[i][j] = add(C[i - 1][j - 1], C[i - 1][j]);
}
for(int i = 1; i <= M; i++) U[i] = read();
for(int i = 1; i <= M; i++) R[i] = read();
f[0][N - 1] = 1;
for(int i = 1; i <= M; i++) {
int t = get(U[i], R[i]);
for(int j = K; j <= N; j++) {
for(int k = j; k <= N - 1; k++)
if(k - j <= R[i] - 1) f[i][j] = add(f[i][j], mul(mul(f[i - 1][k], C[k][k - j]), C[N - 1 - k][R[i] - 1 - (k - j)]));
f[i][j] = mul(f[i][j], t);
}
}
printf("%d", f[M][K]);
return 0;
}
/*
100 3 50
500 500 456
13 46 45
*/
洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)的更多相关文章
- 洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】
题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{ ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎
小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\),且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
- P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...
- 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...
- Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...
- p4593 [TJOI2018]教科书般的亵渎
分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
随机推荐
- 【Spark调优】数据倾斜及排查
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...
- (转)p解决 java.util.prefs.BackingStoreException 报错问题
原文:https://blog.csdn.net/baidu_32739019/article/details/78405444 https://developer.ibm.com/answers/q ...
- .NET Core SDK在Windows系统安装后出现Failed to load the hostfxr.dll等问题的解决方法
这次无论如何也要记录下,原因是今天在一台Windows2008R2的电脑上安装.NET Core SDK后再命令行执行dotnet --info 居然爆出了"Failed to load t ...
- [Shell]sed命令在MAC和Linux下的不同使用方式
---------------------------------------------------------------------------------------------------- ...
- 2015 CALLED THE INTERFACE OF 2014
Writer:BYSocket(泥沙砖瓦浆木匠) 微博:BYSocket 豆瓣:BYSocket Reprint it anywhere u want. ”Hi , Happy New Year.Wr ...
- mysql字符串查找(统计客源)
如客源状态为1:2:3:5:6:9,其中6代表成交状态 如果要统计查询出有6这个状态的客源,可以用函数LOCATE(字符,搜索的字符串)来, 示例:统计每个分组下全部客源数total,成交客源数dea ...
- JavaScript之ECMA对象的学习
从传统意义上来说,ECMAScript 并不真正具有类.事实上,除了说明不存在类,在 ECMA-262 中根本没有出现“类”这个词.ECMAScript 定义了“对象定义”,逻辑上等价于其他程序设计语 ...
- 消息中间件RabbitMQ(一)
1.消息中间件 消息队列中间件是指利用高效可靠地消息传递机制传递消息.有两种传递模式:点对点模式.发布/订阅模式.流行的消息中间件有RabblitMQ.Kafka.RockerMQ.它们都提供了基于存 ...
- 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)
摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...
- Perl:undef类型和defined()函数
undef和defined()函数 undef表示的像是数据库中的"null".它表示空,啥也没有,是完全未定义的.这不等于字符串的空,不等于数值0,它是另一种类型. 在某些时候, ...