本文的内容是总结一些MySQL的常见使用技巧,以供没有DBA的团队参考。以下内容以MySQL5.5为准,如无特殊说明,存储引擎以InnoDB为准。

MySQL的特点

了解MySQL的特点有助于更好的使用MySQL,MySQL和其它常见数据库最大的不同在于存在存储引擎这个概念,存储引擎负责存储和读取数据。不同的存储引擎具有不同的特点,用户可以根据业务的特点选择适合的存储引擎,甚至是开发一个新的引擎。MySQL的逻辑架构大致如下:

MySQL默认的存储引擎是InnoDB,该存储引擎的主要特点是:

  • 支持事务处理
  • 支持行级锁
  • 数据存储在表空间中,表空间由一些列数据文件组成
  • 采用MVVC(多版本并发控制)机制实现高并发
  • 表基于主键的聚簇索引建立
  • 支持热备份

其它常见存储引擎特点概述:

  • MyISAM:老版本MySQL的默认引擎,不支持事务和行级锁,开发者可以手动控制表锁;支持全文索引;崩溃后无法安全恢复;支持压缩表,压缩表数据不可修改,但占用空间较少,可以提高查询性能
  • Archive:只支持Insert和Select,批量插入很快,通过全表扫描查询数据
  • SCV:把一个SCV文件当做一个表处理
  • Memory:数据存储在内存中

还有很多,不再一一列举。

数据类型优化

选择数据类型的原则:

  • 选择占用空间小的数据类型
  • 选择简单的类型
  • 避免不必要的可空列

占用空间小的类型更节省硬件资源,如磁盘、内存和CPU。尽量使用简单的类型,如能用int就不用char,因为后者的排序涉及到字符集的选择,比使用int复杂。可空列使用更多的存储空间,如果在可空列上创建索引,MySQL需要额外的字节做记录。创建表时,默认都是可空,容易被开发者忽视,最好是手动改为不可空,如果要存储的数据确实不会有空值的话。

整型类型

整型类型包括:

  • tinyint
  • smallint
  • mediumint
  • int
  • bigint

它们分别使用8、16、24、32和64位存储数字,它们可以表示\(-2^{n-1}\)到\(2^{n-1}-1\)范围的数字,前面可以加unsigned修饰,这样可以让正数的可表示范围提高1倍,但是无法表示负数。另外,为整型指定长度没什么卵用,数据类型定下来,长度也就相应定下来了。

小数类型

  • float
  • double
  • decimal

floatdouble就是通常意义上的floatdouble,前者使用32位存储数据,后者使用64位存储数据,和整型一样,为它们指定长度没什么卵用。

decimal类型比较复杂,支持精确计算,占用的空间也大,decimal使用每4个字节表示9个数字,如decimal(18,9)表示数字长度是18,其中小数位9个数字,整数部分9个数字,加上小数点本身,共占用9个字节。考虑到decimal占用空间较多,以及精度计算很复杂,数据量大的时候可以考虑用bigint代替之,可以在持久化和读取前对真实数据进行一些缩放操作。

字符串类型

  • varchar
  • char
  • varbinary
  • binary
  • blob
  • text
  • 枚举

varchar类型数据实际占用空间等于字符串的长度加上1个或2个用来记录字符串长度的字节(当row-format没有被设置为fixed时),varchar很节省空间。当表中某列字符串类型的数据长度差别较大时适合使用varchar

char的实际占用空间是固定的,当表中字符串数据的长度相差无几或很短时适合使用chart类型。

varcharchar对应的有varbinarybinary,后者存储的是二进制字符串,和前者相比,后者大小写敏感,不用考虑编码方式,执行比较操作时更快。

需要注意的是:虽然varchar(5)varchar(200)在存储“hello”这个字符串时使用相同的存储空间,但并不意味着将varchar的长度设置太大不会影响性能,实际上,MySQL的某些内部计算,比如创建内存临时表时(某些查询会导致MySQL自动创建临时表),会分配固定大小的空间存放数据。

blob使用二进制字符串保存大文本,text使用字符保存大文本,InnoDB会使用专门的外部存储区来存放此类数据,数据行内仅存放指向他们的指针,此类数据不宜创建索引(要创建也只能正对字符串前缀创建),不过也不会有人这么干。

如果某列字符串大量重复且内容有限,可使用枚举代替,MySQL处理枚举时维护了一个“数字-字符串”表,使用枚举可以减少很多存储空间。

时间类型

  • year
  • date
  • time
  • datetime
  • timestamp

datetime存储范围是1001到9999,精确到秒。timestamp存储1970年1月1日午夜以来的秒数,可以表示到2038年。占用4个字节,是datetime占用空间的一半。timestamp表示的时间和时区有关,另外timestamp列还有个特性,执行insert或update语句时,MySQL会自动更新第一个类型为timestamp的列的数据为当前时间。很多表中都有设计有一列叫做UpdateTime,这个列使用timestamp倒是挺合适的,会自动更新,前提是系统不会使用到2038年。

主键类型的选择

尽可能使用整型,整型占用空间少,还可以设置为自动增长。尤其别使用GUID,MD5等哈希值字符串作为主键,这类字符串随机性很大,由于InnoDB主键默认是聚簇索引列,所以导致数据存储太分散。另外,InnoDB的二级索引列中默认包含主键列,如果主键太长,也会使得二级索引很占空间。

特殊类型的数据

存储IP最好使用32位无符号整型,MySQL提供了函数inet_aton()inet_ntoa()进行IP地址的数字表示和字符串表示之间的转换。

索引优化

InnoDB使用B+树实现索引,举个例子,假设有个People,建表语句如下

CREATE TABLE `people` (
`Id` int(11) NOT NULL AUTO_INCREMENT,
`Name` varchar(5) NOT NULL,
`Age` tinyint(4) NOT NULL,
`Number` char(5) NOT NULL COMMENT '编号',
PRIMARY KEY (`Id`),
KEY `i_name_age_number` (`Name`,`Age`,`Number`)
) ENGINE=InnoDB AUTO_INCREMENT=14 DEFAULT CHARSET=utf8;

插入数据:

它的索引结构大致是这样的:

也就是说,索引列的顺序很重要,如果两行数据的Name列相同,则用Age列比较大小,如果Age列相同,则用Number列比较大小。先用第一列排序,然后是第二列,最后是第三列。

查询的使用应该尽量从左往右匹配,另外,如果左边列范围查找,右边列无法使用索引;还有就是不能隔列查询,否则后面的索引也无法使用到。如以下几个SQL是正面范例:

  • SELECT * from people where Name ='Abel' and Age = 2 AND Number = 12312
  • SELECT * from people where Name ='Abel'
  • SELECT * from people where Name like 'Abel%'
  • SELECT * from people where Name = 'Andy' and Age BETWEEN 11 and 20
  • SELECT * from people ORDER BY NAME
  • SELECT * from people ORDER BY NAME, Age
  • SELECT * from people GROUP BY Name

以下几个SQL是反面范例:

  • SELECT * from people where Age = 2
  • SELECT * from people where NAME like '%B'
  • SELECT * from people where age = 2
  • SELECT * from people where NAME = 'ABC' AND number = 3
  • SELECT * from people where NAME like 'B%' and age = 22

一个使用Hash值创建索引的技巧

如果表中有一列存储较长字符串,假设名字为URL,在此列上创建的索引比较大,有个办法可以缓解:创建URL字符串的数字哈希值的索引。再新建一个字段,比如叫做URL_CRC,专门放置URL的哈希值,然后给这个字段创建索引,查询时这样写:

select * from t where URL_CRC = 387695885 and URL = 'www.baidu.com'

如果数据量比较多,为防止哈希冲突,可自定义哈希函数,或用MD5函数返回值的一部分作为哈希值:

SELECT CONV(RIGHT(MD5('www.baidu.com'),16), 16, 10)

前缀索引

如果字符串列存储的数据较长,创建的索引也很大,这时可以使用前缀索引,即:只针对字符串前几个字符做索引,这样可以缩短索引的大小,不过,显然,此类索引在执行order bygroup by时不起作用。

创建前缀索引时选择前缀长度很重要,在不破坏原来数据分布的情况下尽可能选择较短的前缀。举个例子,如果如果大部分字符串是以"abc"开头,那么如果限定前缀索引长度为4,索引值会包含太多的重复的"abcX"。

多列索引

上面提到的“People”上创建的索引即为多列索引,多列索引往往比多个单列索引更好。

  • 对多个索引进行and查询时,应该创建多列索引,而不是多个单列索引
  • 可以试试这样写的效果:
select * from t where f1 = 'v1' and f2 <> 'v2' union all select * from t where f2 = 'v2' and f1 <> 'v1'

多列索引的顺序很重要,通常,不考虑排序和分组查询时,应该把选择性(选择性是指某表索引列不同数据的个数/总行数。选择性高意味着重复数据少)大的列放到前面。但也有例外,如果能确认某些查询是频繁执行的,则应该优先照顾这些查询的选择性,比如,如果上面的People表中Name的选择性大于Age,查询语句应该这样写:

select * from people where name = 'xxx' and age = xx

Name列放了索引中的左侧比较合适,但是如果某个SQL执行的评率最高,比如

select * from people where name = 'xxx' and age = 20,

当age=20的记录在数据库中非常少时,反而把age放到索引列的左端效率更高。把age放了索引左端可能对其它age不等于20的查询来说不公平,如果不能确定age=20是最非常频繁的查询条件,还是要综合考虑,把name放了左侧合适。

聚簇索引

聚簇索引是一种数据存储结构,InnoDB在主键的索引的叶子节点中直接保存了数据行,而不是像二级索引那样只是保存了索引列的值和所指向行的主键值。由于这个特性,一个表只能有一个聚簇索引。如果一个表没有定义主键也没有定义具有唯一索引的列,那么InnoDB会生成一个隐藏列,并且在此列设为聚簇索引列。

覆盖索引

简单地说,某些查询只需要查询索引列,那么就不用再根据索引B树节点记录的主键ID进行二次查询了。

重复索引和冗余索引

如果重复在某列创建索引,并不会带来任何好处,只有坏处,应该尽量避免。比如给主键创建唯一索引和普通索引就是多于的,因为InnoDB的主键默认就是聚簇索引了。

冗余索引和重复索引不同,比如某个索引是(A,B),另一个索引是(A),这叫冗余索引,前者可以代替后者,后者不可以代替前者的作用。但是(A,B)和(B)以及(A,B)和(B,A)不算冗余索引,起作用谁也代替不了谁。

如果一个表中已经存在索引(A),现在又想创建索引(A,B),那么只需扩展就的索引就可以,没有必要创建新的索引。需要注意的是如果已经存在索引(A),那么也没有必要在创建索引(A,ID),其中ID指主键,因为索引A默认已经包含了主键了,也算是冗余主键。

但是,有时候,冗余索引也是可取的,假设已经存在索引(A),将其扩展为(A,B)后,因为B列是一个很长的类型,导致用A单独查询时没有以前快了,这时可以考虑新创建索引(A,B)。

不使用的索引

不使用的索引徒然增加insert、update和delete的效率,应该及时删除

索引使用总结

索引的三星原则:

  • 索引将查询相关的记录按顺序放在一起则得一星
  • 索引中的数据顺序和查询结果的排序一致则得一星
  • 索引中包含了查询所需要的全部列则得一星

第一个条原则的意思是where条件中查询的顺序和索引是一致的,就是前面说的从左到右使用索引。

索引不是万能的,当数据量巨大时,维护索引本身也是耗费性能的,应该考虑分区分表存储。

查询优化

查询慢的原因

是否向数据库请求了多余的行

比如应用程序只需要10条数据,但是却向数据库请求了所有的数据,在显示在UI上之前抛弃了大部分数据。

是否向数据库请求了多余的列

比如应用程序只需要展现5列,但却通过select * from 把全部的列都查了出来

是否重复多次执行了相同的查询

应用程序是否可以考虑一次查询然后缓存,后面的用到时可以使用第一次查询出来的记录。

MySQL是否在扫描额外的记录

通过查看执行计划可以大概了解需要扫描的记录数,如果这个数字超出了预期,尽可能通过添加索引、优化SQL(就是本节的重点),或者改变表结构(如新增一个单独的汇总表,专门供某个语句查询用)来解决。

重构查询的方式

  • 将一个复杂的查询分解成多个简单的查询
  • 将大的查询切分成小的查询,每次查询功能一样,只完成一小部分
  • 分解关联查询。可以将一个大的关联查询改成分别查询若干个表,然后在应用程序代码中处理

杂七杂八

优化count()

Count有两个作用,一是统计指定的列或表达式,二是统计行数。如果参数传入一列名或者是一个表达式,那么count会统计所有结果不为NULL的行数,如果参数是*,那么count会统计所有行数。这里有一个传表达式的例子:

SELECT count(name like 'B%') from people
  • 可以使用近似值优化来代替count(),如执行计划中的行数。
  • 索引覆盖扫描
  • 增加汇总表
  • 增加内存缓存系统记录数据条数

关联查询的优化

  • MySQL优化器关联表查询是这样进行的,比如有两个表A和B通过c列关联,MySQL会遍历A表,然后根据遍历到的c列的值去B表中查找数据。综上所述,通常,如无只需要给B表的c列加上索引即可
  • 确保order by和group by涉及到的列只属于一个表,这样才有可能发挥索引的作用

优化子查询

对于MySQL5.5及以下版本,尽量用连接代替子查询。

优化group by、distinct

如果可能,尽量对主键施加这两种操作。

优化limit

比如有SQL

SELECT * from sa_stockinfo ORDER BY StockAcc LIMIT 400, 5

MySQL优化器会查找405行所有列数据然后丢弃400。如果能利用覆盖索引查询则不必查询出这么多列,先修改为:

SELECT * FROM sa_stockinfo i JOIN (SELECT StockInfoID FROM sa_stockinfo	ORDER BY StockAcc LIMIT 400,5)t ON i.StockInfoID = t.StockInfoID

StockAcc上建有索引,该查询会利用索引覆盖,较快找出符合条件的主键,然后在做联合查询,在数据量大的时候效果明显。

优化union

如无必要,一定要用关键字 union all,这样MySQL把数据放到临时表时不会再做唯一性验证

判断某条记录是否存在

通常的做法是

select count(*) from t where condition

最好这样写:

SELECT IFNULL((SELECT 1 from tableName where condition LIMIT 1),0)

参考书

  • 《高性能MySQL》

MySQL优化技巧的更多相关文章

  1. 日常工作中常见的mysql优化技巧

    1.介绍一下MYSQL经常使用的优化技巧. MySQL 自带 slow log 的分析工具 mysqldumpslow ,可是没有说明.本文通过分析该脚本,介绍了其用法. slow log 是 MyS ...

  2. MySQL优化技巧之五(mysql查询性能优化)

    对于高性能数据库操作,只靠设计最优的库表结构.建立最好的索引是不够的,还需要合理的设计查询.如果查询写得很糟糕,即使库表结构再合理.索引再合适,也无法实现高性能.查询优化.索引优化.库表结构优化需要齐 ...

  3. MySQL优化技巧【持续更新】

    前言 应用程序或web网页有时慢的像蜗牛爬似的,可能是网络原因,可能是系统架构原因,还有可能是数据库原因.那么如何提高数据库SQL语句执行速度呢?下面是积累的一些优化技巧,望对君有用. 正文 1.比较 ...

  4. MySQL优化技巧总结

    MySQL优化的几个大方向 ① 硬件优化 ② 对MySQL配置参数进行优化(my.cnf)此优化需要进行压力测试来进行参数调整 ③ SQL语句方面的优化 ④ 表方面的优化   硬件优化 cpu,内存, ...

  5. 项目中常用的19条MySQL优化技巧

    原文:https://segmentfault.com/a/1190000012155267 声明一下:下面的优化方案都是基于 “ Mysql-索引-BTree类型 ” 的 一.EXPLAIN 做My ...

  6. 那些可能被你忽略的MySQL优化技巧

    说明:本文中的内容适用于MySQL5.1-5.6版本,不保证新的版本中仍然适用; 且只针对于大部分常见应用场景,是否有效果应以基于实际业务数据的测试为准. 1 优先把列设置为NOT NULL 允许NU ...

  7. mysql优化技巧《转》

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  8. MySQL优化技巧之三(索引操作和查询优化)

    对于任何DBMS,索引都是进行优化的最主要的因素.对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降.如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能 ...

  9. MySQL优化技巧之四(数据库设计中的一些技巧)

    1. 原始单据与实体之间的关系 可以是一对一.一对多.多对多的关系.在一般情况下,它们是一对一的关系:即一张原始单据对应且只对应一个实体.在特殊情况下,它们可能是一对多或多对一的关系,即一张原始单证对 ...

随机推荐

  1. linux尝试登录失败后锁定用户账户的两种方法

    linux尝试登录失败后锁定用户账户的两种方法 更新时间:2017年06月23日 08:44:31   作者:Carey    我要评论   这篇文章主要给大家分享了linux尝试登录失败后锁定用户账 ...

  2. Shell中sed----学习

    sed原理及使用 目录 前言 一.简介 二.处理流程 三.命令选项options 四.pattern 1. 模式空间 2. 模式空间的转换 3. 地址匹配 五.procedure 1. 替换命令: s ...

  3. 一篇文章搞定百度OCR图片文字识别API

    一篇文章搞定百度OCR图片文字识别API https://www.jianshu.com/p/7905d3b12104

  4. mvc @html.action() 跨area调用controller 中的action

    @{Html.RenderAction("ActionName", "ControllerName", new { area = "Manager&q ...

  5. 基于SRS+OBS搭建直播系统

    这段时间与视频,直播相关的技术不可谓不热,今天我们就近距离接触下,尽早搭上这班车! 我们先看一张效果图 左边是OBS 推流端,右边是VLC播放器,稍微有延迟! 本文是基于VMware(12.5.7)+ ...

  6. docker使用代理(测试docker 17.06)

    环境:debian9 service docker stop sudo HTTP_PROXY=http://127.0.0.1:1080 dockerd sudo docker pull gcr.io ...

  7. 20175325 《JAVA程序设计》实验一 《JAVA开发环境的熟悉》实验报告

    20175325 <JAVA程序设计>实验一 <JAVA开发环境的熟悉>实验报告 一.实验内容及步骤 (一).实验一: 实验要求: 0 参考实验要求 1 建立"自己学 ...

  8. HDU-6060 RXD and dividing

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6060   多校的题目,每次只能写两道SB题,剩下的要么想不到,要么想到了,代码不知道怎么实现,还是写的 ...

  9. MySQL数据库学习书单/书籍

    MySQL数据库学习书单 1.MySQL必知必会(MySQL Crash Course) 豆瓣详情 主要适合前期掌握MySQL,豆瓣评分8.4. 2.高性能MySQL 豆瓣详情 ​ 主要适合进阶阅读使 ...

  10. python微信自动回复

    模块是itchat 下载:命令行输入 pip install itchat import itchat #导入itchat模块 itchat.auto_login() #登陆微信,授权 用命令行发送给 ...