出处:http://www.importnew.com/26850.html

正常情况下,每个子线程完成各自的任务就可以结束了。不过有的时候,我们希望多个线程协同工作来完成某个任务,这时就涉及到了线程间通信了。

本文涉及到的知识点:thread.join(), object.wait(), object.notify(), CountdownLatch, CyclicBarrier, FutureTask, Callable 等。

下面我从几个例子作为切入点来讲解下 Java 里有哪些方法来实现线程间通信。

  • 如何让两个线程依次执行?
  • 那如何让 两个线程按照指定方式有序交叉运行呢?
  • 四个线程 A B C D,其中 D 要等到 A B C 全执行完毕后才执行,而且 A B C 是同步运行的
  • 三个运动员各自准备,等到三个人都准备好后,再一起跑
  • 子线程完成某件任务后,把得到的结果回传给主线程

先给出关键词的结论:

 wait()、notify()、notifyAll()  这三个方法都是java.lang.Object的方法。 协调多个线程对共享数据的存取,所以必须在synchronized语句块内使用

 sleep()、join()、yield()  Thread类的方法

1. sleep() 使线程休眠一段时间,一段时间结束后,线程进入可执行状态,但并不是立即执行,只是在被排程器调用的时候才执行。在休眠期间,并不释放所持有的“锁”;

2. wait()  wait 与 notify/notifyAll 方法必须在同步代码块中使用,即要先对调用对象加锁,当线程执行wait()时,会把当前的锁释放,然后让出CPU,进入等待状态。 使线程休眠一段时间,若设置参数,时间到时,线程就自动进入可执行状态。若没有,则需要notify()、notifyAll()方法去调用。

3. yield() 使线程放弃执行的权利,进入可执行状态,也就意味着线程在yield()方法后,有可能又执行。使用yield()方法,线程并不释放自己锁持有的“锁”。

4:join() Thread类中的join()的主要作用就是同步,它可以使得线程之间的并行执行变为串行执行。join()方法使调用该方法的线程在此之前执行完毕,也就是等待 该方法的线程执行完毕后 再往下继续执行

5: notify/notifyAll 当执行notify/notifyAll方法时,会唤醒一个处于等待该 对象锁 的线程,然后继续往下执行,直到执行完退出对象锁锁住的区域(synchronized修饰的代码块)后再释放锁。

举一个wait()和notify()交互的实例:

public class SynDemo {

    private Object lock;

    public SynDemo(Object lock) {
this.lock = lock;
} public void test1(){
synchronized (lock){
System.out.println("test1 is running1");
try {
Thread.sleep(2000);
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("test1 is running2"); }
} public void test2() {
synchronized (lock){
System.out.println("test2 is running1");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
lock.notify();
System.out.println("test2 is running2");
}
} }

调用:

      Object lock = new Object();

        Thread third = new Thread(()->{
SynDemo demo = new SynDemo(lock);
demo.test1(); });
third.start();
Thread five = new Thread(()->{
SynDemo demo = new SynDemo(lock);
demo.test2(); });
five.start(); console打印结果:
test1 is running1
test2 is running1
test2 is running2
test1 is running2

分析:

  线程third 中调用test1方法,首先获得同步锁,然后休眠了2秒,这个时候还占用着同步锁,之后调用wait,释放同步锁,线程five中的test2获得同步锁,调用lock.notify();唤醒线程third,但是five并没有释放锁,而是等在执行完之后,third才获得锁。由此可见调用了notify之后,并不会释放锁,只是唤醒被wait的线程而已。
  notify()和notifyAll的区别是,notify只会随机的唤醒一个线程,notifyAll唤醒全部wait的线程,所以在实际使用的时候尽量使用notifyAll。
 

举例分析join()方法: Java线程中的join的意义在于等我执行完你在执行。

回到之前提到的问题: 如何让两个线程依次执行?

假设有两个线程,一个是线程 A,另一个是线程 B,两个线程分别依次打印 1-3 三个数字即可。我们来看下代码:

private static void demo1() {
Thread A = new Thread(new Runnable() {
@Override
public void run() {
printNumber("A");
}
});
Thread B = new Thread(new Runnable() {
@Override
public void run() {
printNumber("B");
}
});
A.start();
B.start();
}

其中的 printNumber(String) 实现如下,用来依次打印 1, 2, 3 三个数字:

private static void printNumber(String threadName) {
int i=0;
while (i++ < 3) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(threadName + " print:" + i);
}
}

这时我们console得到的结果是:

B print: 1
A print: 1
B print: 2
A print: 2
B print: 3
A print: 3

可以看到 A 和 B 是同时打印的。那么,如果我们希望 B 在 A 全部打印 完后再开始打印呢?我们可以利用 thread.join() 方法,代码如下:

private static void demo2() {
Thread A = new Thread(new Runnable() {
@Override
public void run() {
printNumber("A");
}
});
Thread B = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("B 开始等待 A");
try {
A.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
printNumber("B");
}
});
B.start();
A.start();
}

得到的结果如下:  

B 开始等待 A
A print: 1
A print: 2
A print: 3
 
B print: 1
B print: 2
B print: 3

所以我们能看到 A.join() 方法会让 B 一直等待直到 A 运行完毕。

实现目标:那如何让两个线程按照指定方式有序交叉运行呢?

还是上面那个例子,我现在希望 A 在打印完 1 后,再让 B 打印 1, 2, 3,最后再回到 A 继续打印 2, 3。这种需求下,显然 Thread.join() 已经不能满足了。我们需要更细粒度的锁来控制执行顺序。

这里,我们可以利用 object.wait() 和 object.notify() 两个方法来实现。代码如下:

private static void demo3() {
Object lock = new Object();
Thread A = new Thread(new Runnable() {
@Override
public void run() {
synchronized (lock) {
System.out.println("A 1");
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("A 2");
System.out.println("A 3");
}
}
});
Thread B = new Thread(new Runnable() {
@Override
public void run() {
synchronized (lock) {
System.out.println("B 1");
System.out.println("B 2");
System.out.println("B 3");
lock.notify();
}
}
});
A.start();
B.start();
}

打印结果如下:

A 1
A waiting…
 
B 1
B 2
B 3
A 2
A 3

正是我们要的结果。

那么,这个过程发生了什么呢?

  1. 首先创建一个 A 和 B 共享的对象锁 lock = new Object();
  2. 当 A 得到锁后,先打印 1,然后调用 lock.wait() 方法,交出锁的控制权,进入 wait 状态;
  3. 对 B 而言,由于 A 最开始得到了锁,导致 B 无法执行;直到 A 调用 lock.wait() 释放控制权后, B 才得到了锁;
  4. B 在得到锁后打印 1, 2, 3;然后调用 lock.notify() 方法,唤醒正在 wait 的 A;
  5. A 被唤醒后,继续打印剩下的 2,3。

实现目标:四个线程 A B C D,其中 D 要等到 A B C 全执行完毕后才执行,而且 A B C 是同步运行的.

最开始我们介绍了 thread.join(),可以让一个线程等另一个线程运行完毕后再继续执行,那我们可以在 D 线程里依次 join A B C,不过这也就使得 A B C 必须依次执行,而我们要的是这三者能同步运行。

或者说,我们希望达到的目的是:A B C 三个线程同时运行,各自独立运行完后通知 D;对 D 而言,只要 A B C 都运行完了,D 再开始运行。针对这种情况,我们可以利用 CountdownLatch 来实现这类通信方式。它的基本用法是:

  1. 创建一个计数器,设置初始值,CountdownLatch countDownLatch = new CountDownLatch(2);
  2. 在 等待线程 里调用 countDownLatch.await() 方法,进入等待状态,直到计数值变成 0;
  3. 在 其他线程 里,调用 countDownLatch.countDown() 方法,该方法会将计数值减小 1;
  4. 当 其他线程 的 countDown() 方法把计数值变成 0 时,等待线程 里的 countDownLatch.await() 立即退出,继续执行下面的代码。

实现代码如下:

private static void runDAfterABC() {
int worker = 3;
CountDownLatch countDownLatch = new CountDownLatch(worker);
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("D is waiting for other three threads");
try {
countDownLatch.await();
System.out.println("All done, D starts working");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
for (char threadName='A'; threadName <= 'C'; threadName++) {
final String tN = String.valueOf(threadName);
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(tN + "is working");
try {
Thread.sleep(100);
} catch (Exception e) {
e.printStackTrace();
}
System.out.println(tN + "finished");
countDownLatch.countDown();
}
}).start();
}
}

下面是运行结果:

D is waiting for other three threads
A is working
B is working
C is working
 
A finished
C finished
B finished
All done, D starts working

其实简单点来说,CountDownLatch 就是一个倒计数器,我们把初始计数值设置为3,当 D 运行时,先调用 countDownLatch.await() 检查计数器值是否为 0,若不为 0 则保持等待状态;当A B C 各自运行完后都会利用countDownLatch.countDown(),将倒计数器减 1,当三个都运行完后,计数器被减至 0;此时立即触发 D 的 await() 运行结束,继续向下执行。

因此,CountDownLatch 适用于一个线程去等待多个线程的情况。

实现目标:三个运动员各自准备,等到三个人都准备好后,再一起跑

上面是一个形象的比喻,针对 线程 A B C 各自开始准备,直到三者都准备完毕,然后再同时运行 。也就是要实现一种 线程之间互相等待 的效果,那应该怎么来实现呢?

上面的 CountDownLatch 可以用来倒计数,但当计数完毕,只有一个线程的 await() 会得到响应,无法让多个线程同时触发。

为了实现线程间互相等待这种需求,我们可以利用 CyclicBarrier 数据结构,它的基本用法是:

  1. 先创建一个公共 CyclicBarrier 对象,设置 同时等待 的线程数,CyclicBarrier cyclicBarrier = new CyclicBarrier(3);
  2. 这些线程同时开始自己做准备,自身准备完毕后,需要等待别人准备完毕,这时调用 cyclicBarrier.await(); 即可开始等待别人;
  3. 当指定的 同时等待 的线程数都调用了 cyclicBarrier.await();时,意味着这些线程都准备完毕好,然后这些线程才 同时继续执行。

实现代码如下,设想有三个跑步运动员,各自准备好后等待其他人,全部准备好后才开始跑:

private static void runABCWhenAllReady() {
int runner = 3;
CyclicBarrier cyclicBarrier = new CyclicBarrier(runner);
final Random random = new Random();
for (char runnerName='A'; runnerName <= 'C'; runnerName++) {
final String rN = String.valueOf(runnerName);
new Thread(new Runnable() {
@Override
public void run() {
long prepareTime = random.nextInt(10000) + 100;
System.out.println(rN + "is preparing for time:" + prepareTime);
try {
Thread.sleep(prepareTime);
} catch (Exception e) {
e.printStackTrace();
}
try {
System.out.println(rN + "is prepared, waiting for others");
cyclicBarrier.await(); // 当前运动员准备完毕,等待别人准备好
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(rN + "starts running"); // 所有运动员都准备好了,一起开始跑
}
}).start();
}
}

打印的结果如下:

A is preparing for time: 4131
B is preparing for time: 6349
C is preparing for time: 8206
 
A is prepared, waiting for others
 
B is prepared, waiting for others
 
C is prepared, waiting for others
 
C starts running
A starts running
B starts running

实现目标:子线程完成某件任务后,把得到的结果回传给主线程

实际的开发中,我们经常要创建子线程来做一些耗时任务,然后把任务执行结果回传给主线程使用,这种情况在 Java 里要如何实现呢?

回顾线程的创建,我们一般会把 Runnable 对象传给 Thread 去执行。Runnable定义如下:

public interface Runnable {
public abstract void run();
}

可以看到 run() 在执行完后不会返回任何结果。那如果希望返回结果呢?这里可以利用另一个类似的接口类 Callable:

@FunctionalInterface
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}

可以看出 Callable 最大区别就是返回范型 V 结果。

那么下一个问题就是,如何把子线程的结果回传回来呢?在 Java 里,有一个类是配合 Callable 使用的:FutureTask,不过注意,它获取结果的 get 方法会阻塞主线程。

举例,我们想让子线程去计算从 1 加到 100,并把算出的结果返回到主线程。

private static void doTaskWithResultInWorker() {
Callable<Integer> callable = new Callable<Integer>() {
@Override
public Integer call() throws Exception {
System.out.println("Task starts");
Thread.sleep(1000);
int result = 0;
for (int i=0; i<=100; i++) {
result += i;
}
System.out.println("Task finished and return result");
return result;
}
};
FutureTask<Integer> futureTask = new FutureTask<>(callable);
new Thread(futureTask).start();
try {
System.out.println("Before futureTask.get()");
System.out.println("Result:" + futureTask.get());
System.out.println("After futureTask.get()");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}

打印结果如下:

Before futureTask.get()
 
Task starts
Task finished and return result
 
Result: 5050
After futureTask.get()

可以看到,主线程调用 futureTask.get() 方法时阻塞主线程;然后 Callable 内部开始执行,并返回运算结果;此时 futureTask.get() 得到结果,主线程恢复运行。

这里我们可以学到,通过 FutureTask 和 Callable 可以直接在主线程获得子线程的运算结果,只不过需要阻塞主线程。当然,如果不希望阻塞主线程,可以考虑利用 ExecutorService,把 FutureTask 放到线程池去管理执行。

Java 里如何实现线程间通信(转载)的更多相关文章

  1. Java 里如何实现线程间通信

    正常情况下,每个子线程完成各自的任务就可以结束了.不过有的时候,我们希望多个线程协同工作来完成某个任务,这时就涉及到了线程间通信了. 本文涉及到的知识点:thread.join(), object.w ...

  2. 【转】Java里如何实现线程间通信

    正常情况下,每个子线程完成各自的任务就可以结束了.不过有的时候,我们希望多个线程协同工作来完成某个任务,这时就涉及到了线程间通信了. 本文涉及到的知识点:thread.join(), object.w ...

  3. Java笔记(二十)……线程间通信

    概述 当需要多线程配合完成一项任务时,往往需要用到线程间通信,以确保任务的稳步快速运行 相关语句 wait():挂起线程,释放锁,相当于自动放弃了执行权限 notify():唤醒wait等待队列里的第 ...

  4. Java多线程编程(6)--线程间通信(下)

      因为本文的内容大部分是以生产者/消费者模式来进行讲解和举例的,所以在开始学习本文介绍的几种线程间的通信方式之前,我们先来熟悉一下生产者/消费者模式.   在实际的软件开发过程中,经常会碰到如下场景 ...

  5. Java多线程编程核心技术---线程间通信(二)

    通过管道进行线程间通信:字节流 Java提供了各种各样的输入/输出流Stream可以很方便地对数据进行操作,其中管道流(pipeStream)是一种特殊的流,用于在不同线程间直接传送数据,一个线程发送 ...

  6. Java多线程编程核心技术---线程间通信(一)

    线程是操作系统中独立的个体,但这些个体如果不经过特殊处理就不能成为一个整体.线程间的通信就是成为整体的必用方案之一.线程间通信可以使系统之间的交互性更强大,在大大提高CPU利用率的同时还会使程序员对各 ...

  7. Java并发——使用Condition线程间通信

    线程间通信 线程之间除了同步互斥,还要考虑通信.在Java5之前我们的通信方式为:wait 和 notify.Condition的优势是支持多路等待,即可以定义多个Condition,每个condit ...

  8. Java 中如何实现线程间通信

    世界以痛吻我,要我报之以歌 -- 泰戈尔<飞鸟集> 虽然通常每个子线程只需要完成自己的任务,但是有时我们希望多个线程一起工作来完成一个任务,这就涉及到线程间通信. 关于线程间通信本文涉及到 ...

  9. java多线程同步以及线程间通信详解&消费者生产者模式&死锁&Thread.join()(多线程编程之二)

    本篇我们将讨论以下知识点: 1.线程同步问题的产生 什么是线程同步问题,我们先来看一段卖票系统的代码,然后再分析这个问题: package com.zejian.test; /** * @author ...

随机推荐

  1. 在win10 64位系统安装 lxml (Python 3.5)

    本想直接用pip install lxml 命令安装完事,但是由于安装过程中跟VS的一些东西冲突怎么都安装不上,搜索到以下方法,问题解决. 步骤: 1.下载跟python匹配的.whl 文件(lxml ...

  2. (转)Spring Boot 2 (四):使用 Docker 部署 Spring Boot

    http://www.ityouknow.com/springboot/2018/03/19/spring-boot-docker.html Docker 技术发展为微服务落地提供了更加便利的环境,使 ...

  3. mysql数据权限的分配

    在我们使用mysql数据库时,有时我们的程序与数据库不在同一机器上,这时我们需要远程访问数据库.缺省状态下,mysql的用户没有远程访问的权限. 下面介绍两种方法,解决这一问题. 1.改表法 可能是你 ...

  4. nginx配置tomcat负载均衡,nginx.conf配置文件的配置

  5. Python 中两个字典(dict)合并

    dict1 = { "name":"owen", "age": 18 } dict2 = { "birthday": & ...

  6. css3 object-fit详解

    上传头像的时候遇到了头像变形的问题,最后通过object-fit: cover完美解决了.这个CSS属性可以达到最佳最完美的居中自动剪裁图片的功能. object-fit理解 CSS3 backgro ...

  7. ubuntu18.04 pip换源 永久修改

    1. 创建pip.conf文件 cd ~/.pip 如果提示目录不存在的话,我们要自行创建一个,再进入目录 mkdir ~/.pip cd ~/.pip 在.pip目录下创建一个pip.conf文件 ...

  8. 用于文本分类的多层注意力模型(Hierachical Attention Nerworks)

    论文来源:Hierarchical Attention Networks for Document Classification 1.概述 文本分类时NLP应用中最基本的任务,从之前的机器学习到现在基 ...

  9. flask-sqlalchemy 一对一,一对多,多对多操作

    先进行如下操作: from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy app=Flask(__name__) db= ...

  10. 2018Action Recognition from Skeleton Data via Analogical Generalization over Qualitative Representations

    论文标题: 来源/作者机构情况: Northwestern University Thirty-Second AAAI Conference on Artificial Intelligence, 2 ...