本文主要实现了两个工作:1.验证码生成   2.Pytorch识别验证码

一. 验证码生成

方法1. 利用PIL库的ImageDraw实现绘图,此法参考博客实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 15:45:04 2018 @author: lps
""" from PIL import Image, ImageDraw, ImageFont, ImageFilter
import random
import cv2
import numpy as np
import matplotlib.pyplot as plt
path = '/media/lps/python-3.5.2.amd64/Lib/site-packages/matplotlib/mpl-data/fonts/ttf/' # 选择字体
data_path = '/home/lps/yanzm/' # random chr
def rndChar():
return chr(random.randint(65, 90)) # 随机字母 def rndInt():
return str(random.randint(0,9)) # 随机数字 def rndColor():
return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255)) # 随机颜色 def rndColor2():
return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127)) # 随机颜色 def gaussian_noise(): # 高斯噪声
mu = 125
sigma = 20
return tuple((np.random.normal(mu, sigma, 3).astype(int))) def rotate(x, angle): # 旋转
M_rotate = cv2.getRotationMatrix2D((x.shape[0]/2, x.shape[1]/2), angle, 1)
x = cv2.warpAffine(x, M_rotate, (x.shape[0], x.shape[1]))
return x width = 180 * 4
height = 180 def gen_image(num): for l in range(num): image = Image.new('RGB', (width, height), (255, 255, 255)) # 先生成一张大图 font = ImageFont.truetype(path+'cmb10.ttf', 36) draw = ImageDraw.Draw(image) # 新的画板 for x in range(0,width):
for y in range(0,height):
draw.point((x, y), fill=rndColor()) label = [] for t in range(4): # 每一张验证码4个数字
numb = rndInt()
draw.text((180 * t + 60+10, 60+10), numb, font=font, fill=rndColor2())
label.append(numb) with open(data_path+"label.txt","a") as f:
for s in label:
f.write(s + ' ')
f.writelines("\n") # 写入label img = image.filter(ImageFilter.GaussianBlur(radius=0.5))
img = np.array(img) img1 = np.array([]) for i in range(0,4):
img0 = img[:, 180*i: 180*i+180] # 提取含有验证码的小图
angle = random.randint(-45, 45)
img0 = rotate(img0, angle) # 对小图随机旋转 if img1.any():
img1 = np.concatenate((img1, img0[60:120, 60:120, :]), axis=1) else:
img1 = img0[60:120, 60:120, :] plt.imsave(data_path+'src/' + str(l)+'.jpg', img1) # 保存结果 if __name__=='__main__':
gen_image(100)

结果大致:

方法2. 利用更专业的库:captcha

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 25 19:06:46 2018 @author: lps
"""
from captcha.image import ImageCaptcha
import numpy as np
#import matplotlib.pyplot as plt
from PIL import Image
import random
import cv2 number = ['','','','','','','','','','']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] data_path = '/home/lps/yanzm/' def random_captcha_text(char_set=number,captcha_size=4): # 可以设置只用来生成数字
captcha_text = []
for i in range(captcha_size):
c = random.choice(char_set)
captcha_text.append(c)
return captcha_text def gen_capthcha_text_and_image(m):
image = ImageCaptcha()
captcha_text = random_captcha_text() # 生成数字
captcha_text = ' '.join(captcha_text) # 生成标签 captcha = image.generate(captcha_text) # image.write(captcha_text,captcha_text+'.jpg') captcha_image = Image.open(captcha)
captcha_image = np.array(captcha_image) with open(data_path+"label.txt","a") as f: # 写入标签
f.write(captcha_text)
f.writelines("\n")
cv2.imwrite(data_path + '/src/'+'%.4d.jpg'%m, captcha_image) # 保存 # return captcha_text,captcha_image if __name__ == '__main__': for m in range(0,5000):
# text,image = gen_capthcha_text_and_image()
gen_capthcha_text_and_image(m) # f = plt.figure()
# ax = f.add_subplot(212)
# ax.text(0.1,0.1,text,ha='center',va='center',transform=ax.transAxes)
# plt.imshow(image)
# plt.show()
#

结果大致:

二. pytorch实现

对于一张验证码来说作为一张单一的图片,每输入一张图片,得到四个数字作为输出,只有4个数字同时预测正确才表示预测正确。所以在每一张图上是四个多二分类器:因为验证码上面的数字为0-9,类似于mnist,只不过此时一张图片对应于4个数字。所以思路很简单,实现如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 30 15:46:09 2018 @author: lps
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision.models as models
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import matplotlib.pyplot as plt
from PIL import Image
#import pandas as pd
import numpy as np
import os
import copy, time file_path = '/home/lps/yanzm'
BATCH_SIZE = 16
EPOCH = 10 # Load data
class dataset(Dataset): def __init__(self, root_dir, label_file, transform=None): self.root_dir = root_dir
self.label = np.loadtxt(label_file)
self.transform = transform def __getitem__(self, idx): img_name = os.path.join(self.root_dir,'%.4d.jpg'%idx)
image = Image.open(img_name)
labels = self.label[idx,:] # sample = image if self.transform:
image = self.transform(image) return image, labels def __len__(self): return (self.label.shape[0]) data = dataset(file_path+'/src', file_path+'/label.txt',transform=transforms.ToTensor()) dataloader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, drop_last=True) dataset_size = len(data) # Conv network
class ConvNet(nn.Module): def __init__(self):
super(ConvNet, self).__init__()
self.conv =nn.Sequential(
nn.Conv2d(3, 32, kernel_size=4, stride=1, padding=2), # in:(bs,3,60,160)
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2), # out:(bs,32,30,80) nn.Conv2d(32, 64, kernel_size=4, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2), # out:(bs,64,15,40) nn.Conv2d(64, 64, kernel_size=3 ,stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2) # out:(bs,64,7,20)
) self.fc1 = nn.Linear(64*7*20, 500)
self.fc2 = nn.Linear(500,40) def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1) # reshape to (batch_size, 64 * 7 * 30)
output = self.fc1(x)
output = self.fc2(output) return output # Train the net
class nCrossEntropyLoss(torch.nn.Module): def __init__(self, n=4):
super(nCrossEntropyLoss, self).__init__()
self.n = n
self.total_loss = 0
self.loss = nn.CrossEntropyLoss() def forward(self, output, label):
output_t = output[:,0:10]
label = Variable(torch.LongTensor(label.data.cpu().numpy())).cuda()
label_t = label[:,0] for i in range(1, self.n):
output_t = torch.cat((output_t, output[:,10*i:10*i+10]), 0) # 损失的思路是将一张图平均剪切为4张小图即4个多分类,然后再用多分类交叉熵方损失
label_t = torch.cat((label_t, label[:,i]), 0)
self.total_loss = self.loss(output_t, label_t) return self.total_loss def equal(np1,np2): n = 0
for i in range(np1.shape[0]):
if (np1[i,:]==np2[i,:]).all():
n += 1 return n net = ConvNet().cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
#loss_func = nn.CrossEntropyLoss()
loss_func = nCrossEntropyLoss() best_model_wts = copy.deepcopy(net.state_dict())
best_acc = 0.0 since = time.time()
for epoch in range(EPOCH): running_loss=0.0
running_corrects=0 for step,(inputs,label) in enumerate(dataloader): pred = torch.LongTensor(BATCH_SIZE,1).zero_()
inputs = Variable(inputs).cuda() # (bs, 3, 60, 240)
label = Variable(label).cuda() # (bs, 4) optimizer.zero_grad() output = net(inputs) # (bs, 40)
loss = loss_func(output, label) for i in range(4):
pre = F.log_softmax(output[:,10*i:10*i+10], dim=1) # (bs, 10)
pred = torch.cat((pred, pre.data.max(1, keepdim=True)[1].cpu()), dim=1) # loss.backward()
optimizer.step() running_loss += loss.data[0] * inputs.size()[0]
running_corrects += equal(pred.numpy()[:,1:], label.data.cpu().numpy().astype(int)) epoch_loss = running_loss / dataset_size
epoch_acc = running_corrects / dataset_size if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(net.state_dict()) if epoch == EPOCH-1:
torch.save(best_model_wts, file_path+'/best_model_wts.pkl') print() time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Train Loss:{:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))

随机生成5000张图片拿来训练,准确率也会有97%左右。

Pytorch之验证码识别的更多相关文章

  1. 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别

    这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...

  2. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  3. 验证码识别<1>

    1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...

  4. 简单的验证码识别(opecv)

    opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 :  一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理:  验证码 ...

  5. 利用开源程序(ImageMagick+tesseract-ocr)实现图像验证码识别

    --------------------------------------------------低调的分割线-------------------------------------------- ...

  6. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  7. Java验证码识别解决方案

    建库,去重,切割,识别. package edu.fzu.ir.test; import java.awt.Color; import java.awt.image.BufferedImage; im ...

  8. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  9. Python验证码识别处理实例(转载)

    版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 一.准备工作与代码实例 1.PIL.pytesser.tesseract ...

随机推荐

  1. Java中String和byte[]间的转换浅析

    Java语言中字符串类型和字节数组类型相互之间的转换经常发生,网上的分析及代码也比较多,本文将分析总结常规的byte[]和String间的转换以及十六进制String和byte[]间相互转换的原理及实 ...

  2. 2017-12-15python全栈9期第二天第五节之格式化输出补充之想要在格式化输出中表示单纯的%号就加%

    #!/user/bin/python# -*- coding:utf-8 -*-name = input('姓名:')age = input('年龄:')height = input('身高:')ms ...

  3. NandFlash学习

    目录 NandFlash学习 概述 原理图(K9F2G08U0C) 启动的引脚配置 命令概述 操作概述 Uboot下操作体验 ID与地址编码 时序初始化 程序设计 忙判断 基本操作 读NAND 擦除 ...

  4. Elastic Stack之Redis集群使用

    Elastic Stack之Redis集群使用 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客数据流走向:FileBeat ===>Redis  ===>lo ...

  5. Rancher之Pipeline JAVA demo

    Rancher Pipeline Pipeline,简单来说,就是一套运行于Rancher上的工作流框架,将原本独立运行于单个或者多个节点的任务连接起来,实现单个任务难以完成的复杂发布流程. Ranc ...

  6. Linux学习笔记:【000】Linux系统入门

    什么是Linux? Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX(可移植操作系统接口 Portable Operating System Interface of UN ...

  7. 修改ScriptBundle 生成顺序

    ScriptBundle 一般用法 C#的代码如下: bundles.Add(new ScriptBundle("~/bundles/jqueryval") .Include(&q ...

  8. 打印流PrintStream

    打印流PrintStream PrintStream extends OutputStream 1.打印流的特点 只负责数据的输出,不负责数据的读取 与其他的流不同,打印流永远不会抛出IOExcept ...

  9. Silverlight数据绑定之 绑定一个int类型的属性

    还就真心不会啊! 在类FunctionPanel中作如下定义: /// <summary> /// 鼠标状态 属性 /// </summary> public Dependen ...

  10. python3.x与2.x区别

    1.性能 Py3.0运行 pystone benchmark的速度比Py2.5慢30%.Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可 以取得很好的优化结果. Py3.1性能比Py2 ...