本文主要实现了两个工作:1.验证码生成   2.Pytorch识别验证码

一. 验证码生成

方法1. 利用PIL库的ImageDraw实现绘图,此法参考博客实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 15:45:04 2018 @author: lps
""" from PIL import Image, ImageDraw, ImageFont, ImageFilter
import random
import cv2
import numpy as np
import matplotlib.pyplot as plt
path = '/media/lps/python-3.5.2.amd64/Lib/site-packages/matplotlib/mpl-data/fonts/ttf/' # 选择字体
data_path = '/home/lps/yanzm/' # random chr
def rndChar():
return chr(random.randint(65, 90)) # 随机字母 def rndInt():
return str(random.randint(0,9)) # 随机数字 def rndColor():
return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255)) # 随机颜色 def rndColor2():
return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127)) # 随机颜色 def gaussian_noise(): # 高斯噪声
mu = 125
sigma = 20
return tuple((np.random.normal(mu, sigma, 3).astype(int))) def rotate(x, angle): # 旋转
M_rotate = cv2.getRotationMatrix2D((x.shape[0]/2, x.shape[1]/2), angle, 1)
x = cv2.warpAffine(x, M_rotate, (x.shape[0], x.shape[1]))
return x width = 180 * 4
height = 180 def gen_image(num): for l in range(num): image = Image.new('RGB', (width, height), (255, 255, 255)) # 先生成一张大图 font = ImageFont.truetype(path+'cmb10.ttf', 36) draw = ImageDraw.Draw(image) # 新的画板 for x in range(0,width):
for y in range(0,height):
draw.point((x, y), fill=rndColor()) label = [] for t in range(4): # 每一张验证码4个数字
numb = rndInt()
draw.text((180 * t + 60+10, 60+10), numb, font=font, fill=rndColor2())
label.append(numb) with open(data_path+"label.txt","a") as f:
for s in label:
f.write(s + ' ')
f.writelines("\n") # 写入label img = image.filter(ImageFilter.GaussianBlur(radius=0.5))
img = np.array(img) img1 = np.array([]) for i in range(0,4):
img0 = img[:, 180*i: 180*i+180] # 提取含有验证码的小图
angle = random.randint(-45, 45)
img0 = rotate(img0, angle) # 对小图随机旋转 if img1.any():
img1 = np.concatenate((img1, img0[60:120, 60:120, :]), axis=1) else:
img1 = img0[60:120, 60:120, :] plt.imsave(data_path+'src/' + str(l)+'.jpg', img1) # 保存结果 if __name__=='__main__':
gen_image(100)

结果大致:

方法2. 利用更专业的库:captcha

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 25 19:06:46 2018 @author: lps
"""
from captcha.image import ImageCaptcha
import numpy as np
#import matplotlib.pyplot as plt
from PIL import Image
import random
import cv2 number = ['','','','','','','','','','']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] data_path = '/home/lps/yanzm/' def random_captcha_text(char_set=number,captcha_size=4): # 可以设置只用来生成数字
captcha_text = []
for i in range(captcha_size):
c = random.choice(char_set)
captcha_text.append(c)
return captcha_text def gen_capthcha_text_and_image(m):
image = ImageCaptcha()
captcha_text = random_captcha_text() # 生成数字
captcha_text = ' '.join(captcha_text) # 生成标签 captcha = image.generate(captcha_text) # image.write(captcha_text,captcha_text+'.jpg') captcha_image = Image.open(captcha)
captcha_image = np.array(captcha_image) with open(data_path+"label.txt","a") as f: # 写入标签
f.write(captcha_text)
f.writelines("\n")
cv2.imwrite(data_path + '/src/'+'%.4d.jpg'%m, captcha_image) # 保存 # return captcha_text,captcha_image if __name__ == '__main__': for m in range(0,5000):
# text,image = gen_capthcha_text_and_image()
gen_capthcha_text_and_image(m) # f = plt.figure()
# ax = f.add_subplot(212)
# ax.text(0.1,0.1,text,ha='center',va='center',transform=ax.transAxes)
# plt.imshow(image)
# plt.show()
#

结果大致:

二. pytorch实现

对于一张验证码来说作为一张单一的图片,每输入一张图片,得到四个数字作为输出,只有4个数字同时预测正确才表示预测正确。所以在每一张图上是四个多二分类器:因为验证码上面的数字为0-9,类似于mnist,只不过此时一张图片对应于4个数字。所以思路很简单,实现如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 30 15:46:09 2018 @author: lps
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision.models as models
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import matplotlib.pyplot as plt
from PIL import Image
#import pandas as pd
import numpy as np
import os
import copy, time file_path = '/home/lps/yanzm'
BATCH_SIZE = 16
EPOCH = 10 # Load data
class dataset(Dataset): def __init__(self, root_dir, label_file, transform=None): self.root_dir = root_dir
self.label = np.loadtxt(label_file)
self.transform = transform def __getitem__(self, idx): img_name = os.path.join(self.root_dir,'%.4d.jpg'%idx)
image = Image.open(img_name)
labels = self.label[idx,:] # sample = image if self.transform:
image = self.transform(image) return image, labels def __len__(self): return (self.label.shape[0]) data = dataset(file_path+'/src', file_path+'/label.txt',transform=transforms.ToTensor()) dataloader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, drop_last=True) dataset_size = len(data) # Conv network
class ConvNet(nn.Module): def __init__(self):
super(ConvNet, self).__init__()
self.conv =nn.Sequential(
nn.Conv2d(3, 32, kernel_size=4, stride=1, padding=2), # in:(bs,3,60,160)
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2), # out:(bs,32,30,80) nn.Conv2d(32, 64, kernel_size=4, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2), # out:(bs,64,15,40) nn.Conv2d(64, 64, kernel_size=3 ,stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2) # out:(bs,64,7,20)
) self.fc1 = nn.Linear(64*7*20, 500)
self.fc2 = nn.Linear(500,40) def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1) # reshape to (batch_size, 64 * 7 * 30)
output = self.fc1(x)
output = self.fc2(output) return output # Train the net
class nCrossEntropyLoss(torch.nn.Module): def __init__(self, n=4):
super(nCrossEntropyLoss, self).__init__()
self.n = n
self.total_loss = 0
self.loss = nn.CrossEntropyLoss() def forward(self, output, label):
output_t = output[:,0:10]
label = Variable(torch.LongTensor(label.data.cpu().numpy())).cuda()
label_t = label[:,0] for i in range(1, self.n):
output_t = torch.cat((output_t, output[:,10*i:10*i+10]), 0) # 损失的思路是将一张图平均剪切为4张小图即4个多分类,然后再用多分类交叉熵方损失
label_t = torch.cat((label_t, label[:,i]), 0)
self.total_loss = self.loss(output_t, label_t) return self.total_loss def equal(np1,np2): n = 0
for i in range(np1.shape[0]):
if (np1[i,:]==np2[i,:]).all():
n += 1 return n net = ConvNet().cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
#loss_func = nn.CrossEntropyLoss()
loss_func = nCrossEntropyLoss() best_model_wts = copy.deepcopy(net.state_dict())
best_acc = 0.0 since = time.time()
for epoch in range(EPOCH): running_loss=0.0
running_corrects=0 for step,(inputs,label) in enumerate(dataloader): pred = torch.LongTensor(BATCH_SIZE,1).zero_()
inputs = Variable(inputs).cuda() # (bs, 3, 60, 240)
label = Variable(label).cuda() # (bs, 4) optimizer.zero_grad() output = net(inputs) # (bs, 40)
loss = loss_func(output, label) for i in range(4):
pre = F.log_softmax(output[:,10*i:10*i+10], dim=1) # (bs, 10)
pred = torch.cat((pred, pre.data.max(1, keepdim=True)[1].cpu()), dim=1) # loss.backward()
optimizer.step() running_loss += loss.data[0] * inputs.size()[0]
running_corrects += equal(pred.numpy()[:,1:], label.data.cpu().numpy().astype(int)) epoch_loss = running_loss / dataset_size
epoch_acc = running_corrects / dataset_size if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(net.state_dict()) if epoch == EPOCH-1:
torch.save(best_model_wts, file_path+'/best_model_wts.pkl') print() time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Train Loss:{:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))

随机生成5000张图片拿来训练,准确率也会有97%左右。

Pytorch之验证码识别的更多相关文章

  1. 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别

    这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...

  2. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  3. 验证码识别<1>

    1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...

  4. 简单的验证码识别(opecv)

    opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 :  一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理:  验证码 ...

  5. 利用开源程序(ImageMagick+tesseract-ocr)实现图像验证码识别

    --------------------------------------------------低调的分割线-------------------------------------------- ...

  6. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  7. Java验证码识别解决方案

    建库,去重,切割,识别. package edu.fzu.ir.test; import java.awt.Color; import java.awt.image.BufferedImage; im ...

  8. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  9. Python验证码识别处理实例(转载)

    版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 一.准备工作与代码实例 1.PIL.pytesser.tesseract ...

随机推荐

  1. SpringBoot项目部署在同一个tomcat容器报错

    在一个Tomcat容器中部署了两个springboot的应用,在启动时发现一直都是第一个启动的项目能启动成功,第二个项目启动报错,错误信息如下: 2018-01-30 15:49:27.810 ERR ...

  2. 剑指Offer_编程题_5

    题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型.   class Solution { public: void push(int node) { if( ...

  3. maven构建myeclipse 工程

    前提:安装maven完成后 mvn -version查看版本 一,新建WEB 工程  mvn archetype:generate -DgroupId={project-packaging} -Dar ...

  4. Unity-使用面向对象的思想

    在做游戏之初,老师曾经说过要用面向对象的思想去做.当时满口答应,应为学了一点C#的原因感觉面向对象很简单嘛,但是事实上在做游戏的过程中,为了赶进度我的代码写的很冗余,很乱.这就导致了我不得不重新修改. ...

  5. js实现table用鼠标改变td的宽度,固定table宽度和高度超过显示点

    <!DOCTYPE HTML> <html> <head> <meta charset="gbk"> <title>ta ...

  6. python matplotlib 库学习

    基本使用 import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1,1,50) y = 2*x+1 plt.figur ...

  7. 细说log4j之概述

    log4j官网:https://logging.apache.org/ log4j目前存在2个版本:log4j 1.x 和log4j 2.x,目前官方主推2.x版本(log4j 1.x已于2015.0 ...

  8. 网易PM599产品笔试题

    前几天做了网易PM599的云计算领域产培生的笔试题目,下面整理了一下各个方向的笔试题和我对这些题目的解答. 云计算领域: 1.对工业互联网的理解,结合自身优势谈谈自己应该怎么去创业. 工业互联网是一次 ...

  9. Vue.Draggable/SortableJS 的排序功能,在VUE中的使用

    此插件git: https://github.com/SortableJS/Vue.Draggable 基于Sortable.js http://www.cnblogs.com/xiangsj/p/6 ...

  10. Android中的分层----service 层,domain层,dao 层,action层等设计

    service 层 服务层:直接为客户端提供的服务或功能.也是系统所能对外提供的功能. domain层 领域层:系统内的领域活动,存放实体. dao 层 持久层,DB操作都写在这里,数据访问对象,通过 ...