P4843 清理雪道
题目地址:P4843 清理雪道
上下界网络流
无源汇上下界可行流
给定 \(n\) 个点, \(m\) 条边的网络,求一个可行解,使得边 \((u,v)\) 的流量介于 \([B(u,v),C(u,v)]\) 之间,并且整个网络满足流量守恒。
如果把 \(C-B\) 作为容量上界, \(0\) 作为容量下界,就是一般的网络流模型。
然而求出的实际流量为 \(f(u,v)+B(u,v)\) ,不一定满足流量守恒,需要调整。
设 \(inB[u]=\sum B(i,u)\) , \(outB[u]=\sum B(u,i)\) , \(d[u]=inB[u]-outB[u]\) 。
新建源汇, \(S\) 向 \(d>0\) 的点连边, \(d<0\) 的点向 \(T\) 连边,容量为相应的 \(d\) 。
在该网络上求最大流,则每条边的流量 \(+\) 下界就是原网络的一个可行流。
具体实现时,可省略 \(inB,outB\) 数组,直接在 \(d\) 数组上修改。
有源汇上下界可行流
从 \(T\) 到 \(S\) 连一条下界为 \(0\) ,上界为 \(+inf\) 的边,把汇流入的流量转移给源流出的流量,转化为无源汇的网络,然后求解无源汇上下界可行流。
有源汇上下界最小流
两个方法:
- 二分答案 \(ans\) ,从 \(T\) 到 \(S\) 连一条下界为 \(0\) ,上界为 \(ans\) 的边,转化为无源汇网络。找到最小的 \(ans\) ,使得该无源汇上下界网络有可行流。
- 类似有源汇上下界可行流的构图方法,但先不添加 \(T\) 到 \(S\) 的边,求一次超级源到超级汇的最大流。然后再添加一条从 \(T\) 到 \(S\) 下界为 \(0\) ,上界为 \(+inf\) 的边,在残量网络上再求一次超级源到超级汇的最大流。流经 \(T\) 到 \(S\) 的边的流量就是最小流的值。该算法的思想是在第一步中尽可能填充循环流,以减小最小流的代价。
连边:
- \((s,i,0,+inf)\) ;
- \((i,t,0,+inf)\) ;
- 对每条雪道,连边 \((i,j,1,+inf)\) 。
对网络 \(s-t\) 求有源汇上下界最小流。
这里使用方法二。
#include <bits/stdc++.h>
using namespace std;
const int N = 106, M = 2e4 + 6, inf = 1e9;
int n, s, t, S, T, d[N], ans;
int Head[N], Edge[M], Leng[M], Next[M], tot = 1;
inline void add(int x, int y, int z) {
Edge[++tot] = y;
Leng[tot] = z;
Next[tot] = Head[x];
Head[x] = tot;
Edge[++tot] = x;
Leng[tot] = 0;
Next[tot] = Head[y];
Head[y] = tot;
}
inline void ins(int x, int y, int l, int r) {
add(x, y, r - l);
d[x] -= l;
d[y] += l;
}
inline bool bfs() {
memset(d, 0, sizeof(d));
queue<int> q;
q.push(S);
d[S] = 1;
while (q.size()) {
int x = q.front();
q.pop();
for (int i = Head[x]; i; i = Next[i]) {
int y = Edge[i], z = Leng[i];
if (d[y] || !z) continue;
q.push(y);
d[y] = d[x] + 1;
if (y == T) return 1;
}
}
return 0;
}
int dinic(int x, int flow) {
if (x == T) return flow;
int rest = flow;
for (int i = Head[x]; i && rest; i = Next[i]) {
int y = Edge[i], z = Leng[i];
if (d[y] != d[x] + 1 || !z) continue;
int k = dinic(y, min(rest, z));
if (!k) d[y] = 0;
else {
Leng[i] -= k;
Leng[i^1] += k;
rest -= k;
}
}
return flow - rest;
}
int main() {
cin >> n;
s = n + 1, t = n + 2, S = n + 3, T = n + 4;
for (int i = 1; i <= n; i++) {
ins(s, i, 0, inf);
ins(i, t, 0, inf);
int k;
scanf("%d", &k);
while (k--) {
int x;
scanf("%d", &x);
ins(i, x, 1, inf);
}
}
for (int i = 1; i <= t; i++) {
if (d[i] > 0) add(S, i, d[i]);
else if (d[i] < 0) add(i, T, -d[i]);
}
while (bfs()) while (dinic(S, inf));
ins(t, s, 0, inf);
while (bfs()) while (dinic(S, inf));
cout << Leng[tot] << endl;
return 0;
}
P4843 清理雪道的更多相关文章
- P4843 清理雪道(上下界网络流)
P4843 清理雪道 上下界最小流 我们先搞一遍上下界可行流(转) 回忆上下界最大流的写法:在可行流的残量网络$s\ -\ t$上跑最大流,答案为可行流$+$残量网络的最大流 那么上下界最小流的写法呢 ...
- BZOJ 2502 Luogu P4843 清理雪道 最小流
题意: 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机 ...
- 洛谷P4843 清理雪道
题意:给你DAG,求最小路径边覆盖.路径可重. 解:首先可以想到边转点,发现有n²条边,果断超时. 有源汇有上下界最小流. 建图:每条边都建立一条边,流量限制为[1, 1]. 源点向每个点连边,因为都 ...
- BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)
题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...
- luogu P4843 清理雪道
嘟嘟嘟 这其实就是一个最小流的板子题.把每一条边的流量至少为1,然后建立附加源汇跑一遍最大流,连上\(t, s\),再跑一遍最大流就是答案. 刚开始我想错了:统计每一个点的出度和入度,去两者较大值\( ...
- 【BZOJ-2502】清理雪道 有上下界的网络流(有下界的最小流)
2502: 清理雪道 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 594 Solved: 318[Submit][Status][Discuss] ...
- [BZOJ2502]清理雪道
[BZOJ2502]清理雪道 试题描述 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定 ...
- BZOJ 2502: 清理雪道 [最小流]
2502: 清理雪道 题意:任意点出发任意次每条边至少经过一次最小花费. 下界1,裸最小流.... #include <iostream> #include <cstdio> ...
- BZOJ_2502_清理雪道_有源汇上下界最小流
BZOJ_2502_清理雪道_有源汇上下界最小流 Description 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...
随机推荐
- Shiro进行简单的身份验证(二)
一个Realm数据源: shiro.ini: [users] wp=123456 main方法执行认证: package com.wp.shiro; import org.apache.shiro.S ...
- 【知名的移动APP和网站设计工具】Sketch for Mac 54.1
以上图片来源于互联网分享,如涉及版权问题请联系作者删除. 文章素材来源:风云社区(www.scoee.com) 下载地址:风云社区(www.scoee.com) [简介] Sketch 是一款适用 ...
- OS + Windows 10 / office excel vlookup / CredSSP
s https://support.microsoft.com/zh-cn/help/10749/windows-10-find-product-key 查找 Windows 7 或 Windows ...
- 面向对象【林老师版】:__init__定制自己独有的特征(三)
本节内容 1.是如何产生对象 2.实例化的步骤 3.类即类型 一.是如何产生对象? __init__方法用来为对象定制对象自己独有的特征 1.stu1=LuffyStudent()调用报错 1.代码 ...
- 解决ubuntu中arm-linux-gcc not found
1. 注意检查是不是 换了bash的原因 2. 此外还有权限切换以后环境变量换了 3.如果遇到环境变量配置以后,能够找到版本(也就是说 输入 命令的开头按tab以后能够出现补全),这是因为64位下运行 ...
- C#实现的系统内存清理
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...
- 阅读:ECMAScript 6 入门(4)
参考 ECMAScript 6 入门 ES6新特性概览 ES6 全套教程 ECMAScript6 (原著:阮一峰) JavaScript 教程 重新介绍 JavaScript(JS 教程) 数组的扩展 ...
- 2018牛客网暑期ACM多校训练营(第二场)G Transform(二分)
题意 在一个数轴上有n个集装箱,第 i 个集装箱的位置为x[i],且在集装箱内装有a[i]件货物,现在将这些集装箱内的货物进行移动(将一件货物从第 i 个集装箱移动到第 j 个集装箱的花费就为2*ab ...
- 052、overlay如何实现跨主机通信?(2019-03-19 周二)
参考https://www.cnblogs.com/CloudMan6/p/7305989.html 今天开始学习 overlay 网络跨主机通信的原理 root@host01:~# ufw ...
- 12.scrapy框架
一.Scrapy 框架简介 1.简介 Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个 ...