题意

给个无向图,无重边和自环,问最少需要多少路径把边覆盖了。并输出相应路径

分析

首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是  max(1,度数为奇数点的个数/2)。然后就是求欧拉路径了,先将块内度数为奇数的点找出来,留下两个点,其余两两连上虚边,这样我们选择从一个奇数点出发到另一个奇数点,求出一条欧拉路径,统计总路径数。接着就dfs,注意一些细节。

附赠一个求欧拉回路的fleury算法:https://blog.csdn.net/u011466175/article/details/18861415

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define eps 0.0000000001
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = + ;
const int maxm = + ;
const int mod = 1e9+; struct ND{
int v,nxt;
ND(){}
ND(int _v,int _nxt):v(_v),nxt(_nxt){}
}e[maxn*];
bool pvis[maxn],evis[maxn*];
int head[maxn],du[maxn],tot;
int n,m,cnt;
vector<int> ans[maxn],odd;
void init(){
cnt=tot=;
memset(head,-,sizeof(head));
memset(du,,sizeof(du));
memset(pvis,false,sizeof(pvis));
memset(evis,false,sizeof(evis));
for(int i=;i<=n;i++) ans[i].clear();
}
void addedge(int u,int v){
e[tot]=ND(v,head[u]);head[u]=tot++;
e[tot]=ND(u,head[v]);head[v]=tot++;
}
void dfs1(int u){
pvis[u]=true;
if(du[u]%) odd.push_back(u);//同一联通块里奇数度的点
for(int i=head[u];~i;i=e[i].nxt){
int v = e[i].v;
if(!pvis[v]){
dfs1(v);
}
}
}
void dfs2(int u){
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].v;
if(!evis[i]){
evis[i]=evis[i^]=true;//判断边有没有走过
dfs2(v);
int tmp=i%?-(i+)/:i/+; //对应边的编号
if(i<*m) ans[cnt].push_back(tmp); //为原先存在的边
else cnt++; //新连的虚边
}
}
}
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
while(~scanf("%d%d",&n,&m)){
init();
int u,v;
for(int i=;i<m;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
du[u]++,du[v]++;
}
for(int i=;i<=n;i++){
if(!pvis[i]&&du[i]){
odd.clear();
dfs1(i);
for(int i=;i<odd.size();i+=){//保留两个奇度点,其余两两连边
addedge(odd[i],odd[i+]);
}
int rt = odd.size()?odd[]:i;
dfs2(rt);
cnt++;
}
}
printf("%d\n",cnt);
for(int i=;i<cnt;i++){
printf("%d",ans[i].size());
for(int j=ans[i].size()-;j>=;j--){
printf(" %d",ans[i][j]);
}puts("");
}
} return ;
}

HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)的更多相关文章

  1. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  2. HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)

    The Wall has down and the King in the north has to send his soldiers to sentinel. The North can be r ...

  3. HDU - 6311 Cover (欧拉路径)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径.将奇度数的点两两相连边(虚边),然后先 ...

  4. HDU 6311 最少路径覆盖边集 欧拉路径

    Cover Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  5. poj 1422 Air Raid 最少路径覆盖

    题目链接:http://poj.org/problem?id=1422 Consider a town where all the streets are one-way and each stree ...

  6. hdu 5386 Cover (暴力)

    hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...

  7. HDU6311 Cover (欧拉路径->无向图有最少用多少条边不重复的路径可以覆盖一个张无向图)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图 ,输出每条路径的边的序号 , 如果是反向就输出-id. 也就是可以多少次一笔画的方式画完这个无向图. 题解:我们已知最优胜的情况是整个图是欧拉图 ...

  8. hdu 1151 Air Raid(二分图最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS   Memory Limit: 10000K To ...

  9. HDU 1054 Strategic Game(最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...

随机推荐

  1. Java归并排序的递归与非递归实现

    该命题已有无数解释,备份修改后的代码 平均时间复杂度: O(NLogN)  以2为底 最好情况时间复杂度: O(NLogN) 最差情况时间复杂度: O(NLogN) 所需要额外空间: 递归:O(N + ...

  2. Hdoj 1160.FatMouse's Speed 题解

    Problem Description FatMouse believes that the fatter a mouse is, the faster it runs. To disprove th ...

  3. 【LOJ#6073】距离(主席树)

    [LOJ#6073]距离(主席树) 题面 LOJ 题解 两点间的距离是\(dep[x]+dep[y]-2dep[LCA]\). 那么题目要求的东西拆开维护,唯一不好做的就是\(2dep[LCA]\). ...

  4. luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)

    首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2}) ...

  5. [BJOI2012]最多的方案(记忆化搜索)

    第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...

  6. Codeforces Round #487 (Div. 2) C - A Mist of Florescence

    C - A Mist of Florescence 把50*50的矩形拆成4块 #include<bits/stdc++.h> using namespace std; ],b[]; ][ ...

  7. django 配置media 存放调用 图片、图标等文件

    一.需求分析: 一般在网站开发中,有很多类似于用户头像.用户上传的文件,这些经常要改变的媒体文件,需要有一个地方存放,于是就需要media目录,起到跟static类似的功能. 二.在settings. ...

  8. java的抽象方法

    抽象类所起的功能就像定义模板的功能,子类必须继承抽象类,因此不能用final修饰 http://blog.csdn.net/wei_zhi/article/details/52736350 抽象类的函 ...

  9. Vue(基础七)_webpack打包工具(续)

    ---恢复内容开始--- 一.前言               1.webpack-dev-server               2.es6的解析               3.单文件引入 二. ...

  10. ajax 小练习

    <!DOCTYPE html> <html lang="zh-cn"> <head> <meta http-equiv="Con ...