HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)
题意
给个无向图,无重边和自环,问最少需要多少路径把边覆盖了。并输出相应路径
分析
首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是 max(1,度数为奇数点的个数/2)。然后就是求欧拉路径了,先将块内度数为奇数的点找出来,留下两个点,其余两两连上虚边,这样我们选择从一个奇数点出发到另一个奇数点,求出一条欧拉路径,统计总路径数。接着就dfs,注意一些细节。
附赠一个求欧拉回路的fleury算法:https://blog.csdn.net/u011466175/article/details/18861415
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define eps 0.0000000001
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = + ;
const int maxm = + ;
const int mod = 1e9+; struct ND{
int v,nxt;
ND(){}
ND(int _v,int _nxt):v(_v),nxt(_nxt){}
}e[maxn*];
bool pvis[maxn],evis[maxn*];
int head[maxn],du[maxn],tot;
int n,m,cnt;
vector<int> ans[maxn],odd;
void init(){
cnt=tot=;
memset(head,-,sizeof(head));
memset(du,,sizeof(du));
memset(pvis,false,sizeof(pvis));
memset(evis,false,sizeof(evis));
for(int i=;i<=n;i++) ans[i].clear();
}
void addedge(int u,int v){
e[tot]=ND(v,head[u]);head[u]=tot++;
e[tot]=ND(u,head[v]);head[v]=tot++;
}
void dfs1(int u){
pvis[u]=true;
if(du[u]%) odd.push_back(u);//同一联通块里奇数度的点
for(int i=head[u];~i;i=e[i].nxt){
int v = e[i].v;
if(!pvis[v]){
dfs1(v);
}
}
}
void dfs2(int u){
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].v;
if(!evis[i]){
evis[i]=evis[i^]=true;//判断边有没有走过
dfs2(v);
int tmp=i%?-(i+)/:i/+; //对应边的编号
if(i<*m) ans[cnt].push_back(tmp); //为原先存在的边
else cnt++; //新连的虚边
}
}
}
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
while(~scanf("%d%d",&n,&m)){
init();
int u,v;
for(int i=;i<m;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
du[u]++,du[v]++;
}
for(int i=;i<=n;i++){
if(!pvis[i]&&du[i]){
odd.clear();
dfs1(i);
for(int i=;i<odd.size();i+=){//保留两个奇度点,其余两两连边
addedge(odd[i],odd[i+]);
}
int rt = odd.size()?odd[]:i;
dfs2(rt);
cnt++;
}
}
printf("%d\n",cnt);
for(int i=;i<cnt;i++){
printf("%d",ans[i].size());
for(int j=ans[i].size()-;j>=;j--){
printf(" %d",ans[i][j]);
}puts("");
}
} return ;
}
HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)的更多相关文章
- HDU 6311 Cover (无向图最小路径覆盖)
HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)
The Wall has down and the King in the north has to send his soldiers to sentinel. The North can be r ...
- HDU - 6311 Cover (欧拉路径)
题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1} 条路径.将奇度数的点两两相连边(虚边),然后先 ...
- HDU 6311 最少路径覆盖边集 欧拉路径
Cover Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- poj 1422 Air Raid 最少路径覆盖
题目链接:http://poj.org/problem?id=1422 Consider a town where all the streets are one-way and each stree ...
- hdu 5386 Cover (暴力)
hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...
- HDU6311 Cover (欧拉路径->无向图有最少用多少条边不重复的路径可以覆盖一个张无向图)
题意:有最少用多少条边不重复的路径可以覆盖一个张无向图 ,输出每条路径的边的序号 , 如果是反向就输出-id. 也就是可以多少次一笔画的方式画完这个无向图. 题解:我们已知最优胜的情况是整个图是欧拉图 ...
- hdu 1151 Air Raid(二分图最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS Memory Limit: 10000K To ...
- HDU 1054 Strategic Game(最小路径覆盖)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...
随机推荐
- 【AGC005F】Many Easy Problems FFT 容斥原理
题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...
- 如何使用JPQL写纯SQL语句
使用JPQL,需要把SQL语句修改成类似HQL 语句.SQL 查询的是数据库,而JPQL 查询的是对象和属性,在语法上是有些不同的.对于有些用JPQL 无法写出来的查询,还是使用原生SQL写出来方便 ...
- dll 修复....
之前在安装时总是会碰到缺少什么dll文件,总是头疼的要命,这次很幸运的在网上搜到了这个神奇的小玩意,只需要运行就能够修复缺少的所有的dll文件,所以在这小小的分享一下. 链接:https://pan. ...
- python学习日记(格式化输出,初始编码,运算符)
格式化输出 顾名思义,按照个人意愿定制想输出的格式. name = input('请输入姓名:') age = int(input('请输入年龄:')) job = input('请输入工作:') h ...
- HAOI2017 简要题解
「HAOI2017」新型城市化 题意 有一个 \(n\) 个点的无向图,其中只有 \(m\) 对点之间没有连边,保证这张图可以被分为至多两个团. 对于 \(m\) 对未连边的点对,判断有哪些点对满足将 ...
- Luogu P5316 【恋恋的数学题】
是个神仙题 就三种情况,分类讨论. \(k=2\): 因为保证有解,所以直接输出即可. \(k=3\): 由于对应情况可以枚举全排列寻找,所以在此只考虑顺序对应时的情况,不妨设六个数分别为\(g_{a ...
- Python面试指南
1.Python基本语法 1.@staticmethod 和 @classmethod Python中有三种方法,实例方法.类方法(@classmethod).静态方法(@staticmethod). ...
- [hexo]如何更换主题、删除文章
如何修改主题 hexo有很多主题,每个人可以选择自己喜欢的主题来应用,也可以自己设计主题并且上传形成公共主题供大家下载. 如果是自己设计主题的话,会稍微麻烦一些,需要自己配置很多文件,并且编写css以 ...
- photoshop学习4
蒙版 路径学习 一.蒙版 蒙版可以理解为一层在图层上的遮挡布,为什么要将图层遮住呢,有什么好处.好处在于容易编辑. 在一个图层上建立一个蒙版之后,可以用再删掉不需要的部分,从而露出原图层的部分.那么这 ...
- A.01.03-模块的输入—模拟量输入
模拟量输入在使用过程中也十分常见,它在很多场合都应用到,但其用法又各有不同,下面列举一些常见的类型进行说明. 第一种为采用模拟口读取离散量的状态,如某开关可能有高.低.悬空三种状态均需能准确判断,这种 ...