POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数。
由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法。

代码如下:
#include <cstdio>
using namespace std;
const int maxn = ;
const int mod = ;
int a;
struct Matrix
{
int m[maxn][maxn];
}ans,res,w,head; Matrix mul(Matrix a,Matrix b,int n)
{
Matrix tmp;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
tmp.m[i][j] = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
for(int k = ; k <= n; k++)
tmp.m[i][j] += ((a.m[i][k] % mod)*(b.m[k][j] % mod))%mod;
return tmp;
} void quickpow(int N,int n)
{
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(i == j) ans.m[i][j] = ;
else ans.m[i][j] = ;
while(N)
{
if(N&) ans = mul(ans,res,);
res = mul(res,res,);
N = N >>;
}
} int main()
{
while(scanf("%d",&a))
{
if(a == -) break;
else if(a == )
{
puts("");
continue;
}
head.m[][] = head.m[][] = head.m[][] = ;
head.m[][] = ;
res.m[][] = res.m[][] = res.m[][] = ;
res.m[][] = ;
quickpow(a,);
w = mul(ans,head,);
printf("%d\n",w.m[][]);
}
return ;
}
POJ 3070(求斐波那契数 矩阵快速幂)的更多相关文章
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- poj3070 (斐波那契,矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9630 Accepted: 6839 Descrip ...
- POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17171 Accepted: 11999 Descr ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- THUWC2018游记
前言 这次THUWC有pretest,非常不错.但还是要对拍. DAY1 上午先去报个到. 下午1:30开始比赛,状态还是很好的. 开场先看题. 发现t1是个联赛贪心题,就花了半个小时写完+拍完了. ...
- 【AGC018F】Two Trees 构造 黑白染色
题目描述 有两棵有根树,顶点的编号都是\(1\)~\(n\). 你要给每个点一个权值\(a_i\),使得对于两棵树的所有顶点\(x\),满足\(|x\)的子树的权值和\(|=1\) \(n\leq 1 ...
- linux命令:查看系统版本
debian系统 (1) lsb_release -a No LSB modules are available. Distributor ID: Debian Description: Debia ...
- 设置Linux防火墙
设置 Linux 服务器防火墙脚本,Web_iptables.sh 通过内网可访问服务器所有开放端口 给跳板机开放sshd端口连接服务器 信任ip 所有端口均开放 开放部分端口供外部访问 #!/bin ...
- 【BZOJ4061】[Cerc2012]Farm and factory(最短路,构造)
[BZOJ4061][Cerc2012]Farm and factory(最短路,构造) 题面 BZOJ 然而权限题QwQ. 题解 先求出所有点到达\(1,2\)的最短路,不妨记为\(d_{u,1}, ...
- Nowcoder | [题解-N210]牛客OI月赛2-提高组
比赛连接戳这里^_^ 我才不会说这是我出的题(逃) 周赛题解\((2018.10.14)\) \(T1\) \(25\sim50\)分做法\(:\)直接爆搜 作为一个良心仁慈又可爱的出题人当然\(T1 ...
- 【转】linux清屏的几种方法
在windows的DOS操作界面里面,清屏的命令是cls,那么在linux 里面的清屏命令是什么呢?下面笔者分享几种在linux下用过的清屏方法. 1.clear命令.这个命令将会刷新屏幕,本质上只是 ...
- H5左侧滑删除简单实现
简单的左滑删除 实现功能 在一个列表的一条中,往左滑动时,右边出现删除按钮,点击可删除这一条 实现办法 列表中一项为父div,其中包含内容div和删除按钮span 父div相对定位,设置宽度.内容di ...
- optimize PHP-FPM优化
php-fpm进程pidpids=$(ps aux | grep ${process} | grep -v "grep" | awk '{print $2}') php-fpm 关 ...
- centos7下安装部署mongodb集群(副本集模式)
环境需求:Mongodb集群有三种模式: Replica Set, Sharding,Master-Slaver. 这里部署的是Replica Set模式. 测试环境: 这里副本集(Replica ...