POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数。
由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法。
代码如下:
#include <cstdio>
using namespace std;
const int maxn = ;
const int mod = ;
int a;
struct Matrix
{
int m[maxn][maxn];
}ans,res,w,head; Matrix mul(Matrix a,Matrix b,int n)
{
Matrix tmp;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
tmp.m[i][j] = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
for(int k = ; k <= n; k++)
tmp.m[i][j] += ((a.m[i][k] % mod)*(b.m[k][j] % mod))%mod;
return tmp;
} void quickpow(int N,int n)
{
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(i == j) ans.m[i][j] = ;
else ans.m[i][j] = ;
while(N)
{
if(N&) ans = mul(ans,res,);
res = mul(res,res,);
N = N >>;
}
} int main()
{
while(scanf("%d",&a))
{
if(a == -) break;
else if(a == )
{
puts("");
continue;
}
head.m[][] = head.m[][] = head.m[][] = ;
head.m[][] = ;
res.m[][] = res.m[][] = res.m[][] = ;
res.m[][] = ;
quickpow(a,);
w = mul(ans,head,);
printf("%d\n",w.m[][]);
}
return ;
}
POJ 3070(求斐波那契数 矩阵快速幂)的更多相关文章
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- poj3070 (斐波那契,矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9630 Accepted: 6839 Descrip ...
- POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17171 Accepted: 11999 Descr ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- JeeSite4.x 搭建并部署到服务器
1.下载地址:https://gitee.com/thinkgem/jeesite4 2.文档地址:http://jeesite4.mydoc.io/?t=267354 2.1一定要看,都很清晰,没废 ...
- U盘启动盘还原
cmd运行 diskpart list disk clean 一般都是disk 1,不过最好先list查一下 右击桌面上的计算机图标,选择管理,进入磁盘管理,能看到u盘分区是未分配的(黑色),右击,新 ...
- Leetcode 167. 两数之和 II - 输入有序数组 By Python
给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数. 函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2. 说明: 返回的下标值 ...
- [luogu3620][APIO/CTSC 2007]数据备份【贪心+堆+链表】
题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...
- Crash 的文明世界
题目描述 给一棵树,求以每个点为根时下列式子的值. 题解 当k=1时这就是一个经典的换根dp问题. 所以这道题还是要用换根dp解决. 部分分做法: 考虑转移时是这样的一个形式(图是抄的). 用二项式定 ...
- poj 1144 (Tarjan求割点数量)
题目链接:http://poj.org/problem?id=1144 描述 一个电话线公司(简称TLC)正在建立一个新的电话线缆网络.他们连接了若干个地点分别从1到N编号.没有两个地点有相同的号码. ...
- Typescript学习笔记(三)变量声明及作用域
ts的变量声明有var,let和const,这尼玛完全跟es6一样嘛.就稍微介绍一下. 大多数js开发者对于var很熟悉了,原生js里没有块级作用域,只有函数作用域和全局作用域,还存在var的变量提升 ...
- Callable和Future、FutureTask的使用
http://www.silencedut.com/2016/06/15/Callable%E5%92%8CFuture%E3%80%81FutureTask%E7%9A%84%E4%BD%BF%E7 ...
- js 读取包含特殊字符的属性值
在JS中对象的属性可以通过两种方式访问:object.property和object["property"]. 包含特殊字符的属性只能以此方式访问: object["pr ...
- css 蒙层
蒙层 利用z-index: .mui-backdrop-other { position: fixed; top: 44px; right:; bottom:; left:; z-index:; ba ...