POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数。
由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法。
代码如下:
#include <cstdio>
using namespace std;
const int maxn = ;
const int mod = ;
int a;
struct Matrix
{
int m[maxn][maxn];
}ans,res,w,head; Matrix mul(Matrix a,Matrix b,int n)
{
Matrix tmp;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
tmp.m[i][j] = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
for(int k = ; k <= n; k++)
tmp.m[i][j] += ((a.m[i][k] % mod)*(b.m[k][j] % mod))%mod;
return tmp;
} void quickpow(int N,int n)
{
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(i == j) ans.m[i][j] = ;
else ans.m[i][j] = ;
while(N)
{
if(N&) ans = mul(ans,res,);
res = mul(res,res,);
N = N >>;
}
} int main()
{
while(scanf("%d",&a))
{
if(a == -) break;
else if(a == )
{
puts("");
continue;
}
head.m[][] = head.m[][] = head.m[][] = ;
head.m[][] = ;
res.m[][] = res.m[][] = res.m[][] = ;
res.m[][] = ;
quickpow(a,);
w = mul(ans,head,);
printf("%d\n",w.m[][]);
}
return ;
}
POJ 3070(求斐波那契数 矩阵快速幂)的更多相关文章
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- poj3070 (斐波那契,矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9630 Accepted: 6839 Descrip ...
- POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17171 Accepted: 11999 Descr ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- chattr命令详解
[root@localhost ~]# usermod -L yan[root@localhost ~]# passwd -S yanyan LK 2016-07-11 0 99999 7 -1 (密 ...
- webpack入门(五)webpack CLI
webpack的CLI安装和命令 Installation $ npm install webpack -g The webpack command is now available globally ...
- yd的汇总
因为是我这只蒟蒻个人的汇总嘛,可能有些奇♂怪的东西或者不规范的语言出现啦,见谅见谅 搬了一些到知识汇总里,删了一些过时和无用的,少了好多=.= 1.STL_queue 经实践验证,!qs.empty( ...
- C# DateTimePicker控件获取他的年,月,日,时,分,秒
CustomFormat属性设置为: yyyy-MM-dd HH:mm:ss 记住还要修改一个属性值,DateFormat属性 可选项改为Custom,默认是Long
- react-native中的触摸事件
移动应用上的用户交互基本靠"摸".当然,"摸"也是有各种姿势的:在一个按钮上点击,在一个列表上滑动, 或是在一个地图上缩放.React Native 提供了可以 ...
- Hibernate4
内容简介:1.使用log4j的日志存储,2.一对一关系,3.二级缓存 1 整合log4j(了解) l slf4j 核心jar : slf4j-api-1.6.1.jar .slf4j是 ...
- Solr7.1--- 高亮查询
由于测试数据比较少,昨天用Java爬了简书的几百篇文章,唉,又特么两点多睡的.如果你需要这些测试文件GitHub. 如果你看过我前面的文章,直接打开db-data-config.xml文件,添加一个e ...
- (大数 string easy。。。)P1781 宇宙总统 洛谷
题目背景 宇宙总统竞选 题目描述 地球历公元6036年,全宇宙准备竞选一个最贤能的人当总统,共有n个非凡拔尖的人竞选总统,现在票数已经统计完毕,请你算出谁能够当上总统. 输入输出格式 输入格式: pr ...