Turtles

利用LGV转换成求行列式值。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, m, dp1[N][N], dp2[N][N];
char s[N][N];
void solve(int sx, int sy, int dp[N][N]) {
if(s[sx][sy] != '#') dp[sx][sy] = ;
for(int i = ; i <= n; i++) {
for(int j = ; j <= m; j++) {
if(s[i][j] == '#') continue;
dp[i][j] = (dp[i][j] + dp[i - ][j]) % mod;
dp[i][j] = (dp[i][j] + dp[i][j - ]) % mod;
}
}
}
int main() {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++) scanf("%s", s[i] + );
solve(, , dp1);
solve(, , dp2);
printf("%d\n", (1ll * dp1[n - ][m] * dp2[n][m - ] % mod - 1ll * dp1[n][m - ] * dp2[n - ][m] % mod + mod) % mod);
return ;
} /*
*/

Codeforces 348D Turtles LGV的更多相关文章

  1. codeforces 348D Turtles

    codeforces 348D Turtles 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define fi first ...

  2. CodeForces - 348D Turtles(LGV)

    https://vjudge.net/problem/CodeForces-348D 题意 给一个m*n有障碍的图,求从左上角到右下角两条不相交路径的方案数. 分析 用LGV算法.从(1,1)-(n, ...

  3. CodeForces 348D Turtles(LGV定理)题解

    题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种 思路:LGV定理模板.但是定理中只能从n个不同起点走向n个不同终点,那么需要转化.显然必有一只从1 ...

  4. Codeforces.348D.Turtles(容斥 LGV定理 DP)

    题目链接 \(Description\) 给定\(n*m\)的网格,有些格子不能走.求有多少种从\((1,1)\)走到\((n,m)\)的两条不相交路径. \(n,m\leq 3000\). \(So ...

  5. Codeforces 348D DP + LGV定理

    题意及思路:https://www.cnblogs.com/chaoswr/p/9460378.html 代码: #include <bits/stdc++.h> #define LL l ...

  6. CodeForces - 348D:Turtles(LGV定理)

    题意:给定N*M的矩阵,'*'表示可以通过,'#'表示不能通过,现在要找两条路径从[1,1]到[N,M]去,使得除了起点终点,没有交点. 思路:没有思路,就是裸题.  Lindström–Gessel ...

  7. cf348D. Turtles(LGV定理 dp)

    题意 题目链接 在\(n \times m\)有坏点的矩形中找出两条从起点到终点的不相交路径的方案数 Sol Lindström–Gessel–Viennot lemma的裸题? 这个定理是说点集\( ...

  8. LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)

    又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...

  9. LGV 算法 (Lindström–Gessel–Viennot lemma)

    e(ai,bi)为从起点ai到终点bi的方案数.以上矩阵行列式结果就是(a1,a2,...an) 到 (b1,b2,...bn) 的所有不相交路径的种数. 具体证明的话看wiki,比较长.. 这个定理 ...

随机推荐

  1. 清理messages提示-bash: /var/log/messages: Operation not permitted的处理

    报警提示系统盘容量不足了/var/log下查看messages日志已经很大了,所以就想着把messages清空一下,以此来释放空间.在删除的时候提示没有权限. 看了下日志,发现是大量的haproxy日 ...

  2. Android设备管理器——DevicePolicyManager

    自从安卓2.2(API=8)以后,安卓手机是通过设备管理API对手机进行系统级的设备管理. 本篇通过大家熟悉的"一键锁屏"的小项目实现来介绍设备管理API如何通过强制设备管理策略创 ...

  3. python学习第2天

    03 pycharm使用04 格式化输出05 while循环 why: 吃饭睡觉上课, 地球绕着太阳公转,单曲循环,列表循环. what: while how: while 条件: 循环体 where ...

  4. hibernate入门程序

    快速入门       1. 下载Hibernate框架的开发包       2. 编写数据库和表结构 Create database hibernate_day01; Use hibernate_da ...

  5. Oracle 数据备份与恢复

    前言 一:备份与恢复概述 二:RMAN 工具概述 1: RMAN 组件 1: RMAN命令执行器 [oracle@localhost ~]$ rman target system/nocatalog ...

  6. Confluence 6 配置推荐更新邮件通知默认的初始化设置

    Confluence 为订阅者发送常规邮件报告,这个邮件报告中包含有用户具有查看权限的空间的最新的内容.这个被称为 推荐更新(Recommended Updates)通知. 如果你具有 Conflue ...

  7. 为什么在移动端用rem圆角不圆

    rem是根据网页效果图的尺寸来计算的,当然还要借助媒体查询来完成.例如你的设计稿如果是宽720px的话,那你的文字就要以原始大小除以11.25,就是对应下面媒体查询720px:例如16px的话就要16 ...

  8. ionic3 打包报错[ERROR] An error occurred while running cordova prepare (exit code 1):

    解决办法:删除并重新添加平台以使用以下命令解决问题: cordova platform rm ios cordova platform add ios 如果执行 ionic cordova build ...

  9. linux基础实操四

    实操一: 1)为新加的硬盘分区,一个主分区大小为10剩余空间给扩展分区,在扩展分区上划分2个逻辑分别为5G 2)式化主分区为ext3系统 #mkfs.ext3 /dev/sdb1 3 将逻辑分区设置为 ...

  10. 安装lrzsz 实现windows与linux之间文件互传

    环境:CentOS7.4 执行命令安装: [root@linuxhg01 www]# yum install lrzsz rz // Windows 上传到 linux [root@linuxhg01 ...