<题目链接>

题目大意:

有一群孩子正在玩老鹰抓小鸡,由于想当老鹰的人不少,孩子们通过投票的方式产生,但是投票有这么一条规则:投票具有传递性,A支持B,B支持C,那么C获得2票(A.B共两票),输出最多能获得的票数是多少张和获得最多票数的人是谁?(如果有多个人获得的票数都是最多的,就将他们全部输出)。

解题分析:

不难看出,同一连通分量的所有点得到的票数肯定是相同的,所以我们先将原图进行Tarjan缩点。对于缩完点后的图,我们发现,票数最多的人一定在出度为0的"点"中,因为如果票数最多的点不是出度为0的"点",那么它所到达的那个"点"的票数一定大于当前"点"的票数,这与当前"点"票数最多相矛盾。然后考虑对入度为0的"点"的票数统计,我们可以在缩点后进行重新构图,相互连通的"点"之间建立反边,这样方便DFS统计当前"点"的票数。需要注意的是,当前连通分量中所有的点在当前连通分量中获得的票数为num[now]-1(因为要除去自己),然后再加上以这个点为起点,能够到达所有连通分量的点数,即为这个点能够得到的票数。

 #include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std; #define clr(a,b) memset(a,b,sizeof(a))
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define pb push_back
#define mp make_pair
const int N = 5e3+, M = 3e4+;
int n,m,tot,cnt,cnt1,scc,top,sum;
int head[N],head1[N],low[N],dfn[N],belong[N],stk[N],instk[N],num[N],outdeg[N],vis[N],ans[N];
vector<int>G[N];
struct Edge{
int to,next;
}edge[M],edge1[M];
void init(){
rep(i,,n)G[i].clear();
tot=cnt=cnt1=scc=top=;
clr(head,-);clr(head1,-);clr(low,);clr(num,);clr(ans,);
clr(dfn,);clr(stk,);clr(instk,);clr(belong,);clr(outdeg,);
}
void addedge(int u,int v){
edge[cnt].to=v,edge[cnt].next=head[u];
head[u]=cnt++;
}
void addedge1(int u,int v){ //添加缩点后的反向边
edge1[cnt1].to=v,edge1[cnt1].next=head1[u];
head1[u]=cnt1++;
}
void Tarjan(int u){
dfn[u]=low[u]=++tot;
stk[++top]=u;instk[u]=;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(instk[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
scc++;
while(true){
int v=stk[top--];
instk[v]=;
belong[v]=scc;
G[scc].pb(v);
if(v==u)break;
}
}
}
void dfs(int u){ //统计以u连通分量为起点能够到达所有的连通分量的点数之和
vis[u]=;
sum+=num[u];
for(int i=head1[u];~i;i=edge1[i].next){
int v=edge1[i].to;
if(!vis[v])dfs(v);
}
}
int main(){
int T,ncase=;scanf("%d",&T);
while(T--){
init();
scanf("%d%d",&n,&m);
rep(i,,m) {
int u,v;scanf("%d%d",&u,&v);
u++,v++;
addedge(u,v);
}
rep(i,,n) if(!dfn[i]){
Tarjan(i);
}
rep(i,,n) num[belong[i]]++; //求出每个连通分量的点数
rep(u,,n) for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
int tmp1=belong[u],tmp2=belong[v];
if( tmp1!=tmp2 ){ //缩点后,进行重新构图,并且添加的是反向边,方便进行票数的统计
addedge1(tmp2,tmp1);outdeg[tmp1]++;
}
}
int mx=-;
rep(i,,scc) if(!outdeg[i]){ //统计所有出度为0的连通分量所能够得到的票数
clr(vis,);
sum=;dfs(i);
ans[i]=sum-; //获得的票数为路径上所有的点数和-1,因为自己不能获得自己的票
mx=max(mx,ans[i]);
}
printf("Case %d: %d\n",++ncase,mx);
bool first=false;
rep(i,,n) if(ans[belong[i]]==mx){ //将所有票数等于最大票数的点输出
if(!first)printf("%d",i-);
else printf(" %d",i-);
first=true;
}puts("");
}
}

2018-12-01

HDU 3639 Hawk-and-Chicken (强连通缩点+DFS)的更多相关文章

  1. 【HDU 5934】Bomb(强连通缩点)

    Problem Description There are N bombs needing exploding. Each bomb has three attributes: exploding r ...

  2. HDU 5934:Bomb(强连通缩点)

    http://acm.hdu.edu.cn/showproblem.php?pid=5934 题意:有N个炸弹,每个炸弹有一个坐标,一个爆炸范围和一个爆炸花费,如果一个炸弹的爆炸范围内有另外的炸弹,那 ...

  3. Codeforces 1027D Mouse Hunt (强连通缩点 || DFS+并查集)

    <题目链接> 题目大意: 有n个房间,每个房间都会有一只老鼠.处于第i个房间的老鼠可以逃窜到第ai个房间中.现在要清理掉所有的老鼠,而在第i个房间中防止老鼠夹的花费是ci,问你消灭掉所有老 ...

  4. HDU 3639 Hawk-and-Chicken(强连通分量+缩点)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013480600/article/details/32140501 HDU 3639 Hawk-a ...

  5. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  6. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  7. HDU 3639 Hawk-and-Chicken(良好的沟通)

    HDU 3639 Hawk-and-Chicken 题目链接 题意:就是在一个有向图上,满足传递关系,比方a->b, b->c,那么c能够得到2的支持,问得到支持最大的是谁,而且输出这些人 ...

  8. HDU 1827 Summer Holiday(强连通)

    HDU 1827 Summer Holiday 题目链接 题意:中文题 思路:强连通缩点,每一个点的权值为强连通中最小值,然后入度为0的点就是答案 代码: #include <cstdio> ...

  9. poj2553 强连通缩点

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10114   Accepted: ...

随机推荐

  1. java怎样将一组对象传入Oracle存储过程

    注:本文来源 <  java怎样将一组对象传入Oracle存储过程  > java怎样将一组对象传入Oracle存储过程 java怎样将一组对象传入Oracle存储过程.须要注意的是jar ...

  2. mysql视图的作用

    测试表:user有id,name,age,sex字段 测试表:goods有id,name,price字段 测试表:ug有id,userid,goodsid字段 视图的作用实在是太强大了,以下是我体验过 ...

  3. React基础知识备忘

    section-1 //react组件 export class Halo extends React.Component{ constructor(...args){ super(...args); ...

  4. redis-cluster集群搭建

     Redis3.0版本之前,可以通过Redis Sentinel(哨兵)来实现高可用 ( HA ),从3.0版本之后,官方推出了Redis Cluster,它的主要用途是实现数据分片(Data Sha ...

  5. laravel 注入那点事

    public function delete(Group $groupId, Post $postId) { $postId->delete(); return response()->j ...

  6. uva11754 中国剩余定理+暴力搜索

    是当y的组合数较小时,暴力枚举所有组合,然后用中国剩余定理求每种组合的解,对解进行排序即可 注意初始解可能是负数,所以如果凑不够S个,就对所有解加上M,2M.... 当y的组合数较大时,选择一个k/x ...

  7. 一道面试题 vuex缺点?

    最近去面试的时候,面试官有一道题是让我阐述用vuex的优缺点,优点倒还好说,这个缺点还真没有认识到,有道友可以帮忙解惑嘛? 2 回答 慕标5265247 这种问题一般都有通用回答套路.一件挺好的东西, ...

  8. 配置webpack loader vue 报错:Module build failed: TypeError: this._init is not a function

    单文件组件 引入时报错 配置webpage.config.js中的vue 需要如下写法 { test: /\.vue/, loader: "vue-loader", } 之前写的l ...

  9. IDEA新建模块

  10. 插件使用一颜色选择器---cxColor

    cxColor 是一款颜色选择器.这样的插件使用场景不多.可喜的这是国人写的. 官方网站: https://github.com/ciaoca/cxColor 使用方法: 1.引入jquery库 1 ...