小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务。首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”。然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷砖的正、反两面都必须漆成同样的颜色。

有一天小可可突发奇想,觉得有必要试试看这些瓷砖究竟能够漆成多少种本质不同的图案。所谓两种图案本质不同就是其中的一种图案无论如何旋转、或者翻转、或者同时旋转和翻转都不能得到另外一种图案。

旋转是将瓷砖三角形整体顺时针旋转120度或240度。

翻转是将瓷砖三角形整体左右翻动180度。

一开始,小可可觉得这项实验很有意思,他知道n=2时有两个本质不同的漆绘方案,n=4时也只有四个本质不同的漆绘方案。小可可还把这些漆绘方案画了出来。

但是后来小可可发现在变大的过程中,漆绘方案的数目增长很快,在n=14的时候,居然有6760803201217259503457555972096种不同的漆绘方案。这果然是一项非常艰巨的实验。因此他决定请你编写程序帮他求解本质不同的漆绘方案数

输入描述 Input Description

一个正整数n, n≤20

输出描述 Output Description

一行正整数,代表问题的解s。

样例输入 Sample Input

输入1: 1

输入2: 2

样例输出 Sample Output

输出1:2

输出2:4

数据范围及提示 Data Size & Hint

s不超过200位

数据统计 Statistics

分析:总算过了Polya定理了,具体看《离散数学在信息学竞赛中的应用》。这题相当于模板题,先处理出6种等同的情况(旋转(3)*翻转(2)=6),然后一一对应置换群暴力求轮换,然后带公式,要高精度

Polya定理:设对一张图的等效染色对应的置换群的个数为k,其中第I个置换群中轮换的个数为f(i),一共要用m种颜色染色,则总共本质不同的个数为L=(m^f(1)+m^f(2)+……+m^f(k))/k

——————————————————————————————————————————————————————————————————————

补:还有一个叫母函数型Polya定理的东东……这个网上很多资料,自行搜索……

[wikioi2926][AHOI2002]黑白瓷砖(Polya定理)的更多相关文章

  1. P2561 [AHOI2002]黑白瓷砖

    $ \color{#0066ff}{ 题目描述 }$ \(\color{#0066ff}{输入格式}\) 文件中以一行的形式存放一个正整数 n , n ≤ 20 . \(\color{#0066ff} ...

  2. 「算法笔记」Polya 定理

    一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...

  3. [BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)

    由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右.对于每种搜索方案可以轻易求出它所代表的置换具体有多少个. 但我们搜索的是点置换组 ...

  4. Polya 定理 学习笔记

    群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G, ...

  5. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  6. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

  7. HDU 3923 Invoker(polya定理+逆元)

    Invoker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Others)Total Su ...

  8. Polya定理

    http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...

  9. POJ 2409 Let it Bead(Polya定理)

    点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...

随机推荐

  1. oracle11G在linux环境下的卸载操作

    1.使用SQL*PLUS停止数据库[oracle@OracleTest oracle]$ sqlplus logSQL> connect / as sysdbaSQL> shutdown ...

  2. 形如(function(){}).call()的js语句

    研究新浪微博的自动登陆流程,其中涉及到它的加密算法脚本,其中有一段如下形式的代码: (function(){...}).call(name) 其中红色的....是函数的内部各种实现,name为一个对象 ...

  3. 为TFS配置跨平台的生成服务器Xplat (Ubuntu Linux)

    1. 概述 从TFS 2015开始,微软开始支持跨平台的构建代理.你可以使用TFS的Xplat代理,方便的在基于IOS, Unix和Linux的服务器上搭建生成代理,实现构建.发布等功能.本文档已Ub ...

  4. 使用EntityFramework6完成增删查改和事务

    使用EntityFramework6完成增删查改和事务 上一节我们已经学习了如何使用EF连接数据库,并简单演示了一下如何使用EF6对数据库进行操作,这一节我来详细讲解一下. 使用EF对数据库进行操作, ...

  5. [转]ASP.NET 2.0中GridView无限层复杂表头的实现

    本文转自:http://blog.csdn.net/net_lover/article/details/1306211 实现方法就是给单元格填充我们想要的格式代码. C# <%@ Page La ...

  6. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  7. 《The Django Book》实战--第二章--动态网页基础

    这章演示了一些最基本的Django开发动态网页的实例,由于版本不一样,我用的是Django 1.,6.3,有些地方按书上的做是不行的,所以又改了一些,写出来让大家参考. 这是一个用python写的一个 ...

  8. 在Android Studio中使用shareSDK进行社会化分享(图文教程)

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  9. 如何修复AppScan漏洞

    [AppScan]修复漏洞一:启用不安全的HTTP方法 (中) 漏洞背景:      “启用了不安全的 HTTP 方法”属于“中”危漏洞.漏洞描述是:根据APPSCAN的报告,APPSCAN通过OPT ...

  10. java 16 - 9 增强for的概述和使用

    JDK5的新特性:自动拆装箱,泛型,增强for,静态导入,可变参数,枚举 增强for:是for循环的一种. 格式: for(元素数据类型 变量 : 数组或者Collection集合) { 使用变量即可 ...