Shortest Word Distance I/II/III

要点:系列题最重要的是记清题,重点是题目本身的变化和解法之间的关联。

I https://repl.it/CqPf

  • 这题的一般规律从左到右的某个word提供了boundary为之后的word做比较用:所以遇到两个word中的一个,一是和另一个word比较,二是更新本word的boundary。
  • 和Closest Binary Search Tree Value很像,都是boundary限定

III https://repl.it/CqSA

  • I里面两个word不同,遇到任意一个和另一个是互斥的。所以III扩展为可能相同的情况,而word1==word2意义就变了:变成了两个word在不同位置的距离,如果还按1的方法,永远不能比较另一个word。
  • 简单的方法就是在处理第一个word的时候多检查word1word2,这时候和idx1本身算距离, 如果word1word2,就不会落到elif的branch

II https://repl.it/CqPa

  • 用map记录index,题目就转化成了类似merge的算法了。
# Given a list of words and two words word1 and word2, return the shortest distance between these two words in the list.

# For example,
# Assume that words = ["practice", "makes", "perfect", "coding", "makes"]. # Given word1 = “coding”, word2 = “practice”, return 3.
# Given word1 = "makes", word2 = "coding", return 1. # Note:
# You may assume that word1 does not equal to word2, and word1 and word2 are both in the list. # Hide Company Tags LinkedIn
# Hide Tags Array
# Hide Similar Problems (M) Shortest Word Distance II (M) Shortest Word Distance III class Solution(object):
def shortestDistance(self, words, word1, word2):
"""
:type words: List[str]
:type word1: str
:type word2: str
:rtype: int
"""
p1, p2 = -1, -1
shortest = len(words)
for i in xrange(len(words)):
if words[i]==word1:
if p2!=-1 and shortest > i-p2:
shortest = i-p2
p1 = i
elif words[i]==word2:
if p1!=-1 and shortest > i-p1:
shortest = i-p1
p2 = i return shortest
# This is a follow up of Shortest Word Distance. The only difference is now word1 could be the same as word2.

# Given a list of words and two words word1 and word2, return the shortest distance between these two words in the list.

# word1 and word2 may be the same and they represent two individual words in the list.

# For example,
# Assume that words = ["practice", "makes", "perfect", "coding", "makes"]. # Given word1 = “makes”, word2 = “coding”, return 1.
# Given word1 = "makes", word2 = "makes", return 3. # Note:
# You may assume word1 and word2 are both in the list. # Hide Company Tags LinkedIn
# Hide Tags Array
# Hide Similar Problems (E) Shortest Word Distance (M) Shortest Word Distance II class Solution(object):
def shortestWordDistance(self, words, word1, word2):
"""
:type words: List[str]
:type word1: str
:type word2: str
:rtype: int
"""
p1, p2 = -1, -1
shortest = len(words)
for i in xrange(len(words)):
if words[i]==word1:
if word1==word2 and p1!=-1:
shortest = min(shortest, i-p1)
elif p2!=-1:
shortest = min(shortest, i-p2)
p1 = i
elif words[i]==word2:
if p1!=-1:
shortest = min(shortest, i-p1)
p2 = i
return shortest
# This is a follow up of Shortest Word Distance. The only difference is now you are given the list of words and your method will be called repeatedly many times with different parameters. How would you optimize it?

# Design a class which receives a list of words in the constructor, and implements a method that takes two words word1 and word2 and return the shortest distance between these two words in the list.

# For example,
# Assume that words = ["practice", "makes", "perfect", "coding", "makes"]. # Given word1 = “coding”, word2 = “practice”, return 3.
# Given word1 = "makes", word2 = "coding", return 1. # Note:
# You may assume that word1 does not equal to word2, and word1 and word2 are both in the list. # Hide Company Tags LinkedIn
# Hide Tags Hash Table Design
# Hide Similar Problems (E) Merge Two Sorted Lists (E) Shortest Word Distance (M) Shortest Word Distance III from collections import defaultdict
class WordDistance(object):
def __init__(self, words):
"""
initialize your data structure here.
:type words: List[str]
"""
self.wordpos = defaultdict(list)
[self.wordpos[words[i]].append(i) for i in xrange(len(words))] def shortest(self, word1, word2):
"""
Adds a word into the data structure.
:type word1: str
:type word2: str
:rtype: int
"""
wl1 = self.wordpos[word1]
wl2 = self.wordpos[word2] i,j = 0,0
shortest = sys.maxint
while i<len(wl1) and j<len(wl2):
shortest = min(shortest, abs(wl1[i]-wl2[j]))
if wl1[i]<wl2[j]:
i+=1
else:
j+=1
return shortest # Your WordDistance object will be instantiated and called as such:
# wordDistance = WordDistance(words)
# wordDistance.shortest("word1", "word2")
# wordDistance.shortest("anotherWord1", "anotherWord2")

边工作边刷题:70天一遍leetcode: day 75-1的更多相关文章

  1. 边工作边刷题:70天一遍leetcode: day 75

    Group Shifted Strings 要点:开始就想到了string之间前后字符diff要相同. 思维混乱的地方:和某个string的diff之间是没有关系的.所以和单个string是否在那个点 ...

  2. 边工作边刷题:70天一遍leetcode: day 89

    Word Break I/II 现在看都是小case题了,一遍过了.注意这题不是np complete,dp解的time complexity可以是O(n^2) or O(nm) (取决于inner ...

  3. 边工作边刷题:70天一遍leetcode: day 77

    Paint House I/II 要点:这题要区分房子编号i和颜色编号k:目标是某个颜色,所以min的list是上一个房子编号中所有其他颜色+当前颜色的cost https://repl.it/Chw ...

  4. 边工作边刷题:70天一遍leetcode: day 78

    Graph Valid Tree 要点:本身题不难,关键是这题涉及几道关联题目,要清楚之间的差别和关联才能解类似题:isTree就比isCycle多了检查连通性,所以这一系列题从结构上分以下三部分 g ...

  5. 边工作边刷题:70天一遍leetcode: day 85-3

    Zigzag Iterator 要点: 实际不是zigzag而是纵向访问 这题可以扩展到k个list,也可以扩展到只给iterator而不给list.结构上没什么区别,iterator的hasNext ...

  6. 边工作边刷题:70天一遍leetcode: day 101

    dp/recursion的方式和是不是game无关,和game本身的规则有关:flip game不累加值,只需要一个boolean就可以.coin in a line II是从一个方向上选取,所以1d ...

  7. 边工作边刷题:70天一遍leetcode: day 1

    (今日完成:Two Sum, Add Two Numbers, Longest Substring Without Repeating Characters, Median of Two Sorted ...

  8. 边工作边刷题:70天一遍leetcode: day 70

    Design Phone Directory 要点:坑爹的一题,扩展的话类似LRU,但是本题的accept解直接一个set搞定 https://repl.it/Cu0j # Design a Phon ...

  9. 边工作边刷题:70天一遍leetcode: day 71-3

    Two Sum I/II/III 要点:都是简单题,III就要注意如果value-num==num的情况,所以要count,并且count>1 https://repl.it/CrZG 错误点: ...

  10. 边工作边刷题:70天一遍leetcode: day 71-2

    One Edit Distance 要点:有两种解法要考虑:已知长度和未知长度(比如只给个iterator) 已知长度:最好不要用if/else在最外面分情况,而是loop在外,用err记录misma ...

随机推荐

  1. java阻塞队列

    对消息的处理有些麻烦,要保证各种确认.为了确保消息的100%发送成功,笔者在之前的基础上做了一些改进.其中要用到多线程,用于重复发送信息. 所以查了很多关于线程安全的东西,也看到了阻塞队列,发现这个模 ...

  2. The type java.util.Map$Entry cannot be resolved. It is indirectly referenced。。.相似的错误

    这个问题是出现一般都是因为JDK版本的问题.今天公司安装NC的时候就出现了这个问题.经过对错误的分析和猜测,将JDK从1.8i换成了1.7,之后就行了.根据我个人的猜测,可能是1.8以后就不支持Map ...

  3. Linux 安装 Nginx

    1. nginx的安装: 开始学习如何安装nginx,首先安装必要的软件: # yum install libtool # yum install -y gcc-c++ # yum install z ...

  4. SQL Server性能影响的重要结论

    第一次访问数据会比接下来的访问慢的多,因为它要从磁盘读取数据然后写入到缓冲区: 聚合查询(sum,count等)以及其他要扫描大部分表或索引的查询需要大量的缓冲,而且如果它导致SQL Server从缓 ...

  5. Exchange 2013 、Lync 2013、SharePoint 2013

    Office办公系列 在企业中广泛应用,目前服务的客户当中,部分客户已经应用到了 Exchange.Lync.CRM.SharePoint等产品,在开发当中多多少少会涉及到集成,为了更好的服务客户.了 ...

  6. HTML5中的SVG

    * SVG * 基本内容 * SVG并不属于HTML5专有内容 * HTML5提供有关SVG原生的内容 * 在HTML5出现之前,就有SVG内容 * SVG,简单来说就是矢量图 * SVG文件的扩展名 ...

  7. artTemplate 介绍

    artTemplate 是新一代 javascript 模板引擎,它采用预编译方式让性能有了质的飞跃,并且充分利用 javascript 引擎特性,使得其性能无论在前端还是后端都有极其出色的表现. 编 ...

  8. angular 指令——时钟范例

    <html> <head> <meta charset='utf-8'> <title>模块化</title> <script typ ...

  9. ArcGIS制图之Maplex自动点抽稀

    制图工作中,大量密集点显示是最常遇到的问题.其特点是分布可能不均匀.数据点比较密集,容易造成空间上的重叠,影响制图美观.那么,如果美观而详细的显示制图呢? 主要原理 Maplex中对标注有很好的显示控 ...

  10. SQL SERVER – Attach mdf file without ldf file in Database

    Background Story: One of my friends recently called up and asked me if I had spare time to look at h ...