标题: JavaScript 中小数和大整数的精度丢失
作者: Demon
链接: http://demon.tw/copy-paste/javascript-precision.html
版权: 本博客的所有文章,都遵守“署名-非商业性使用-相同方式共享 2.5 中国大陆”协议条款。

先来看两个问题:

0.1 + 0.2 == 0.3; // false
9999999999999999 == 10000000000000000; // true

第一个问题是小数的精度问题,在业界不少博客里已有讨论。第二个问题,去年公司有个系统的数据库在做数据订正时,发现有部分数据重复的诡异现象。本文将从规范出发,对上面的问题做个小结。

最大整数

JavaScript 中的数字是用 IEEE 754 双精度 64 位浮点数 来存储的,其格式为:

s x m x 2^e

s 是符号位,表示正负。 m 是尾数,有 52 bits. e 是指数,有 11 bits. 在 ECMAScript 规范 里有给出 e 的范围为 [-1074, 971]. 这样,很容易推导出 JavaScript 能表示的最大整数为:

1 x (2^53 - 1) x 2^971 = 1.7976931348623157e+308

这个值正是 Number.MAX_VALUE

同理可推导出 Number.MIN_VALUE 的值为:

1 x 1 x 2^(-1074) = 5e-324

注意 MIN_VALUE 表示最接近 0 的正数,而不是最小的数。最小的数是 -Number.MAX_VALUE

小数的精度丢失

十进制 0.1 的二进制为 0.0 0011 0011 0011 … (循环 0011)
十进制 0.2 的二进制为 0.0011 0011 0011 … (循环 0011) 0.1 + 0.2 相加可表示为:
e = -4; m = 1.10011001100...1100(52 位)
+ e = -3; m = 1.10011001100...1100(52 位)
---------------------------------------------
e = -3; m = 0.11001100110...0110
+ e = -3; m = 1.10011001100...1100
---------------------------------------------
e = -3; m = 10.01100110011...001
---------------------------------------------
= 0.01001100110011...001
= 0.30000000000000004(十进制)

根据上面的演算,还可以得出一个结论:当十进制小数的二进制表示的有限数字不超过 52 位时,在 JavaScript 里是可以精确存储的。比如:

0.05 + 0.005 == 0.055 // true

进一步的规律,比如:

0.05 + 0.2 == 0.25 // true
0.05 + 0.9 == 0.95 // false

需要考虑 IEEE 754 的 Rounding modes, 有兴趣的可进一步研究。

大整数的精度丢失

这个问题鲜有人提及。首先得弄清楚问题是什么:

1. JavaScript 能存储的最大整数是什么?

该问题前面已回答,是 Number.MAX_VALUE, 非常大的一个数。

2. JavaScript 能存储的且不丢失精度的最大整数是什么?

根据 s x m x 2^e, 符号位取正,52 位尾数全填充 1, 指数 e 取最大值 971, 显然,答案依旧是 Number.MAX_VALUE.

我们的问题究竟是什么呢?回到起始代码:

9999999999999999 == 10000000000000000; // true

很明显,16 个 9 还远远小于 308 个 10. 这个问题与 MAX_VALUE 没什么关系,还得归属到尾数 m 只有 52 位上来。

可以用代码来描述:

var x = 1; // 为了减少运算量,初始值可以设大一点,比如 Math.pow(2, 53) - 10
while(x != x + 1) x++;
// x = 9007199254740992 即 2^53

也就是说,当 x 小于等于 2^53 时,可以确保 x 的精度不会丢失。当 x 大于 2^53 时,x 的精度有可能会丢失。比如:

x 为 2^53 + 1 时,其二进制表示为:
10000000000...001 (中间共有 52 个 0) 用双精度浮点数存储时:
e = 1; m = 10000..00(共 52 个 0,其中 1 是 hidden bit) 显然,这和 2^53 的存储是一样的。

按照上面的思路可以推出,对于 2^53 + 2, 其二进制为 100000…0010(中间 51 个 0),也是可以精确存储的。

规律:当 x 大于 2^53 且二进制有效位数大于 53 位时,就会存在精度丢失。这和小数的精度丢失本质上是一样的。

hidden bit 可参考:A tutorial about Java double type.

小结

小数和大整数的精度丢失,并不仅仅在 JavaScript 中存在。严格来说,使用了IEEE 754 浮点数格式来存储浮点类型的任何编程语言(C/C++/C#/Java 等等)都存在精度丢失问题。在 C#、Java 中,提供了 Decimal、BigDecimal 封装类来进行相应的处理,才避开了精度丢失。

注:ECMAScript 规范中,已有 decimal proposal,但目前尚未被正式采纳。

最后考考大家:

Number.MAX_VALUE + 1 == Number.MAX_VALUE;
Number.MAX_VALUE + 2 == Number.MAX_VALUE;
...
Number.MAX_VALUE + x == Number.MAX_VALUE;
Number.MAX_VALUE + x + 1 == Infinity;
...
Number.MAX_VALUE + Number.MAX_VALUE == Infinity; // 问题:
// 1. x 的值是什么?
// 2. Infinity - Number.MAX_VALUE == x + 1; 是 true 还是 false ?
参考资料

原文链接:JavaScript 中小数和大整数的精度丢失

随机文章:

  1. 不过冬至好多年
  2. 在Windows下源码编译PHP
  3. VBS调用IE对象直接打印网页
  4. Windows 7音频服务未运行的解决方法
  5. 一个VBS恶作剧程序的解密

[转载]JavaScript 中小数和大整数的精度丢失的更多相关文章

  1. js数字位数太大导致参数精度丢失问题

    最近遇到个比较奇怪的问题,js函数里传参,传一个位数比较大,打印arguments可以看到传过来的参数已经改变. 然后查了一下,发现确实是js精度丢失造成的.我的解决方法是将数字型改成字符型传输,这样 ...

  2. 转载 javascript中的正则表达式总结 一

    定义正则表达式的方法 定义正则表达式的方法有两种:构造函数定义和正则表达式直接量定义.例如: var reg1 = new RegExp('\d{5, 11}'); // 通过构造函数定义 var r ...

  3. 【JavaScript】JavaScript中的陷阱大集合

    本文主要介绍怪异的Javascript,毋庸置疑,它绝对有怪异的一面.当软件开发者开始使用世界上使用最广泛的语言编写代码时,他们会在这个过 程中发现很多有趣的“特性”.即便是老练的Javascript ...

  4. (转载)JavaScript中面向对象那点事

    鉴于自己在JavaScript这方面比较薄弱,所以就找了一本书恶补了一下(被称为犀利书的JavaScript权威指南).书的内容虽然多了点,但这也充分说明了js中的东西还是挺多的.虽然我们的定位不是前 ...

  5. 转载 javascript中(function($){...})(jQuery)写法是什么意思

    javascript中(function($){...})(jQuery)写法是什么意思   这里实际上是匿名函数function(arg){...}这就定义了一个匿名函数,参数为arg 而调用函数 ...

  6. 转载: JavaScript中执行环境和栈

    在这篇文章中,我会深入理解JavaScript最根本的组成之一 : "执行环境(执行上下文)".文章结束后,你应该对解释器试图做什么,为什么一些函数/变量在未声明时就可以调用并且他 ...

  7. json系列(二)cjson,rapidjson,yyjson大整数解析精度对比

    前言上一篇介绍了3种json解析工具的使用方法,对于基础数据的解析没有任何问题.我们传输的json数据里有unsigned long型数据,需要借助json解析工具得到正确的unsigned long ...

  8. springboot中关于Long类型返回前端精度丢失问题处理

    使用了HuTool这个雪花算法后,会出现丢失精度的问题 hutool算法使用地址 对于一些大的业务表,自增主键这里 接口层得注意下是否会产生大数值 设计接口的时候采用String类型. 在项目中,我们 ...

  9. 转载 javascript中的正则表达式总结 二

    学习正则表达式 今年的第一篇javascript文章就是这个正则表达式了,之前的文章是转载别人的,不算自己的东西,可以忽略不计,最近突然想把转载别人的东西 统统删掉,因为转载过的文章,我根本没有从中获 ...

随机推荐

  1. c#访问http接口的"编码"问题

    记一次访问http数据接口的爬坑经历,一般访问一个http接口. 无非就是这么几行代码: HttpWebRequest request = (HttpWebRequest)WebRequest.Cre ...

  2. Apache CXF Webservice入门

    1.步骤一览 关于CXF的介绍请移步官网.百科,这里仅供初次使用者入门. 2.步骤详情 2.1.环境准备 apache-cxf-3.0.0.zip下载 jdk1.7.0_51 Eclipse4.3.0 ...

  3. Windows对象操作:浏览器窗口信息

    属性(值或者子对象):opener:打开当前窗口的源窗口,如果当前窗口是首次启动浏览器打开的,则opener是null,可以利用这个属性来关闭源窗口. 属性:Windows.shuxing; 方法(函 ...

  4. iOS开发——高级技术&PassBook服务

    PassBook服务 Passbook是苹果推出的一个管理登机牌.会员卡.电影票.优惠券等信息的 工具.Passbook就像一个卡包,用于存放你的购物卡.积分卡.电影票.礼品卡等,而这些票据就是一个“ ...

  5. jQuery/javascript实现简单网页计算器

    <html> <head> <meta charset="utf-8"> <title>jQuery实现</title> ...

  6. Quartz 框架的应用

    本文将简单介绍在没有 Spring 的时候..如何来使用 Quartz... 这里跳过 Quartz 的其他介绍.如果想更加输入的了解 Quartz,大家可以点击下载Quartz的帮助文档. Quar ...

  7. springJDBC学习笔记和实例

    前言:相对于Mybatis(ibatis),个人感觉springJDBC更灵活,主要实现类JdbcTemplate:它替我们完成了资源的创建以及释放工作,从而简化了我们对JDBC的使用.它还可以帮助我 ...

  8. 如何将Scrapy 部署到Scrapyd上?

    安装上传工具 1.上传工具 scrapyd-client 2.安装方法: pip install scrapyd-client 3.上传方法: python d:\Python27\Scripts\s ...

  9. iOS7隐藏状态栏 statusBar

    转:http://blog.csdn.net/dqjyong/article/details/17896145 评:通过这点变化,可以看出苹果倾向于使用delegate取代全局变量. IOS7中,不仅 ...

  10. 编写高质量代码改善C#程序的157个建议——导航开篇

    前言 由于最近工作重心的转移,原来和几个同事一起开发的项目也已经上线了,而新项目就是在现有的项目基础上进行优化延伸扩展.打个比方,现在已经上线的项目行政案件的Web管理网站(代码还没那么多相比较即将要 ...