Implement a trie with insert, search, and startsWith methods.

Note:
You may assume that all inputs are consist of lowercase letters a-z.

参考百度百科:Trie树

trie, also called digital tree and sometimes radix tree or prefix tree (as they can be searched by prefixes)

The time complexity to insert and to search is O(m), where m is the length of the string.

标准Trie树的应用和优缺点

(1) 全字匹配:确定待查字串是否与集合的一个单词完全匹配。如上代码fullMatch()。

(2) 前缀匹配:查找集合中与以s为前缀的所有串。

注意:Trie树的结构并不适合用来查找子串。这一点和前面提到的PAT Tree以及后面专门要提到的Suffix Tree的作用有很大不同。

优点: 查找效率比与集合中的每一个字符串做匹配的效率要高很多。在o(m)时间内搜索一个长度为m的字符串s是否在字典里。Predictable O(k) lookup time where k is the size of the key

缺点:标准Trie的空间利用率不高,可能存在大量结点中只有一个子结点,这样的结点绝对是一种浪费。正是这个原因,才迅速推动了下面所讲的压缩trie的开发。

什么时候用Trie?

It all depends on what problem you're trying to solve. If all you need to do is insertions and lookups, go with a hash table. If you need to solve more complex problems such as prefix-related queries, then a trie might be the better solution.

像word search II就是跟前缀有关,如果dfs发现当前形成的前缀都不在字典中,就没必要再搜索下去了,所以用trie不用hashSet

Easy version of implement Trie. TrieNode only contains TrieNode[] children, and boolean isWord two fields

 class Trie {
class TrieNode {
TrieNode[] children;
boolean isWord;
public TrieNode() {
this.children = new TrieNode[26];
this.isWord = false;
}
} TrieNode root; /** Initialize your data structure here. */
public Trie() {
this.root = new TrieNode();
} /** Inserts a word into the trie. */
public void insert(String word) {
if (word == null || word.length() == 0) return;
TrieNode cur = this.root;
for (int i = 0; i < word.length(); i ++) {
if (cur.children[word.charAt(i) - 'a'] == null) {
cur.children[word.charAt(i) - 'a'] = new TrieNode();
}
cur = cur.children[word.charAt(i) - 'a'];
}
cur.isWord = true;
} /** Returns if the word is in the trie. */
public boolean search(String word) {
TrieNode cur = this.root;
for (int i = 0; i < word.length(); i ++) {
if (cur.children[word.charAt(i) - 'a'] == null) return false;
cur = cur.children[word.charAt(i) - 'a'];
}
return cur.isWord;
} /** Returns if there is any word in the trie that starts with the given prefix. */
public boolean startsWith(String prefix) {
TrieNode cur = this.root;
for (int i = 0; i < prefix.length(); i ++) {
if (cur.children[prefix.charAt(i) - 'a'] == null) return false;
cur = cur.children[prefix.charAt(i) - 'a'];
}
return true;
}
}

Older version, TrieNode also has num and val fields, which might not be that useful.

 class TrieNode {
// Initialize your data structure here.
int num; //How many words go through this TrieNode
TrieNode[] son; //collection of sons
boolean isEnd;
char val; public TrieNode() {
this.num = 0;
this.son = new TrieNode[26];
this.isEnd = false;
}
} public class Trie {
private TrieNode root; public Trie() {
root = new TrieNode();
} // Inserts a word into the trie.
public void insert(String word) {
if (word==null || word.length()==0) return;
char[] arr = word.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) {
node.son[pos] = new TrieNode();
node.son[pos].num++;
node.son[pos].val = arr[i];
}
else {
node.son[pos].num++;
}
node = node.son[pos];
}
node.isEnd = true;
} // Returns if the word is in the trie.
public boolean search(String word) {
char[] arr = word.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) return false;
node = node.son[pos];
}
return node.isEnd;
} // Returns if there is any word in the trie
// that starts with the given prefix.
public boolean startsWith(String prefix) {
char[] arr = prefix.toCharArray();
TrieNode node = this.root;
for (int i=0; i<arr.length; i++) {
int pos = (int)(arr[i] - 'a');
if (node.son[pos] == null) return false;
node = node.son[pos];
}
return true;
}
} // Your Trie object will be instantiated and called as such:
// Trie trie = new Trie();
// trie.insert("somestring");
// trie.search("key");

Leetcode: Implement Trie (Prefix Tree) && Summary: Trie的更多相关文章

  1. 【LeetCode】208. Implement Trie (Prefix Tree) 实现 Trie (前缀树)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:Leetcode, 力扣,Trie, 前缀树,字典树,20 ...

  2. Leetcode208. Implement Trie (Prefix Tree)实现Trie(前缀树)

    实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie(); trie.insert(" ...

  3. leetcode面试准备:Implement Trie (Prefix Tree)

    leetcode面试准备:Implement Trie (Prefix Tree) 1 题目 Implement a trie withinsert, search, and startsWith m ...

  4. [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

  5. 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design

    字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...

  6. 【LeetCode】208. Implement Trie (Prefix Tree)

    Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Note:You ...

  7. 【刷题-LeetCode】208. Implement Trie (Prefix Tree)

    Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Example: ...

  8. LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design

    字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith  ...

  9. 【leetcode】208. Implement Trie (Prefix Tree 字典树)

    A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...

随机推荐

  1. Memcache 提高缓存命中率

    最近手上某个项目跟新代码,新的代码里大量采用memcahce作为缓存.所以开始深入了解memcache的内存分配策略.以前就听说有个PHP写的memcache监控脚本,在网上搜索了一下,果断下载下来用 ...

  2. OpenGL 完全教程(写给Delphi的开发者) 前言

    前言 在开发了许多2D图形程序之后,许多人开始对3D图形编程产生了兴趣.学习一套3D API,是进行3D图形编程的基础.在有趣的3D图形编程中,3D API只不过充当着一种低级的工具而已.因此,在这里 ...

  3. 浅析Android中的消息机制(转)

    原博客地址:http://blog.csdn.net/liuhe688/article/details/6407225 在分析Android消息机制之前,我们先来看一段代码: public class ...

  4. BLE-NRF51822教程18-overview

    转自:http://blog.csdn.NET/xgbing 蓝牙协议栈 nrf51822开发中,蓝牙协议栈和应用开发是分开的. (1)兼容蓝牙4.0低功耗协议栈基带层,L2CAP\AAT\SM\GA ...

  5. OC接收数据时毫秒转date时间最简略方法

    一般项目中接收后台的数据会收到毫秒格式的date,需要换算成正规日期格式,这时候我们的好朋友command + c 和 command + v就得出来帮忙了: 可以复制使用如下方法: + (NSStr ...

  6. 设计模式:访问者模式(Visitor)

    定  义:表示作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作. 结构图: 示例: . 状态类: //状态的抽象类 abstract class Act ...

  7. node express 学习1

    参考链接https://cnodejs.org/topic/55ece31004e2cdb230671c50 express-session connect-nongo mongoose 1.安装mo ...

  8. ArcGIS API for Silverlight加载google地图(后续篇)

    原文:ArcGIS API for Silverlight加载google地图(后续篇) 之前在博客中(http://blog.csdn.net/taomanman/article/details/8 ...

  9. IN和exists 之间的比较

    IN和exists 之间的比较 NOT IN 和 NOT EXISTS之间的比较

  10. iOS项目的目录结构和开发流程(Cocoa China)

    目录结构 AppDelegate Models Macro General Helpers Vendors Sections Resources   一个合理的目录结构首先应该是清晰的,让人一眼看上去 ...