PageRanking 通过:

  1. Input degree of link
  2. "Flow" model - 流量判断喜好度

传统的方式又是什么呢?

Every term在某个doc中的权重(地位)。

公共的terms在Query与Doc中对应的的地位(单位化后)直接相乘,然后全部加起来,构成了cosin相似度。

  


Efficient cosine ranking

传统放入堆的模式:n * log(k)

使用Quick Select:n + k * log(k) : "find top k" + "sort top k"

Threshold Methods

  Solution: 

也可以采取非精确的方式,为什么一定要绝对准确的top k呢?

Index Elimination (heuristic function)

  1. idf低,很可能是停用词
  2. 只考虑包含了多个term的doc。但有risk,return的文档数小于k

3 of 4 query terms

故意抽样只关注一部分满足一定人为定制条件的docs。

Champion List

Term 1  R个最高权重的docs

Term 2  R个最高权重的docs

Term 3  R个最高权重的docs

以上的result求并集,得到champion Set,然后在此内求Cosine Similarity.

Cluster Pruning Method

Can you propose some modification to this method such that it guarantees returning
the closest vector for any query? Describe your method and illustrate it with a small
example.

Step 1: Sort leaders.
Step 2: In the high dimensionality, check whether the query is surrounded by the top k leaders. The
initial value of k > 1.
Step 3: If the query is surrounded by top k leaders, we retrieve all the followers around top k
leaders.
Step 4: If not, k = k+1 and goto Step 2.
Let's illustrate it in 2D space.

When k = 3, Q1 is not surrounded by top 3 leaders (A1, A2, A3). Then, k = 4, Q1 is surrounded by
top 4 leaders. We retrieve all the followers around top 4 leaders and get the result. In this case, the
followers around other leaders cannot be closer than this result. This guarantees returning
the closest vector for any query.
This method depends on how do we define the “surround” for high-dimensional space. Normally, at
least k+1 points are needed in k-demensional space to surround one point.

If Q1 (query terms: a, b, c) is surrounded by 4 leaders, as following,
Query (a, b, c)
leader 1: (A1, B1, C1)
leader 2: (A2, B2, C2)
leader 3: (A3, B3, C3)
leader 4: (A4, B4, C4)
a must be between min(A1, A2, A3, A4) and max(A1, A2, A3, A4).
b must be between min(B1, B2, B3, B4) and max(B1, B2, B3, B4).
c must be between min(C1, C2, C3, C4) and max(C1, C2, C3, C4).

[IR] Ranking - top k的更多相关文章

  1. [LeetCode] Top K Frequent Elements 前K个高频元素

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  2. Leetcode 347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  3. 大数据热点问题TOP K

    1单节点上的topK (1)批量数据 数据结构:HashMap, PriorityQueue 步骤:(1)数据预处理:遍历整个数据集,hash表记录词频 (2)构建最小堆:最小堆只存k个数据. 时间复 ...

  4. LeetCode "Top K Frequent Elements"

    A typical solution is heap based - "top K". Complexity is O(nlgk). typedef pair<int, un ...

  5. 347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  6. 面试题:m个长度为n的ordered array,求top k 个 数字

    package com.sinaWeibo.interview; import java.util.Comparator; import java.util.Iterator; import java ...

  7. get top k elements of the same key in hive

    key points: 1. group by key and sort by using distribute by and sort by. 2. get top k elements by a ...

  8. Top k问题(线性时间选择算法)

    问题描述:给定n个整数,求其中第k小的数. 分析:显然,对所有的数据进行排序,即很容易找到第k小的数.但是排序的时间复杂度较高,很难达到线性时间,哈希排序可以实现,但是需要另外的辅助空间. 这里我提供 ...

  9. pig询问top k,每个返回hour和ad_network_id最大的两个记录(SUBSTRING,order,COUNT_STAR,limit)

    pig里面有一个TOP功能.我不知道为什么用不了.有时间去看看pig源代码. SET job.name 'top_k'; SET job.priority HIGH; --REGISTER piggy ...

随机推荐

  1. 冒泡算法应用(坐标Y值降序X值升序)

    今天有个客户需求是有一坐标数组,希望按Y值降序X值升序排列,我临时写了个算法.先写个坐标类: class XYZ {     public XYZ() { }     public XYZ(doubl ...

  2. Android调用浏览器打开网址遇到的问题

    我自己的手机(一加一代,升级了氢OS),然后在点击游戏内一个"隐私政策"-- 需要打开一个网页,然后就crash了.出错的信息如下: 完全是看不出来,然后我单独写了一个demo来测 ...

  3. Linux内核源码详解——命令篇之iostat[zz]

    本文主要分析了Linux的iostat命令的源码,iostat的主要功能见博客:性能测试进阶指南——基础篇之磁盘IO iostat源码共563行,应该算是Linux系统命令代码比较少的了.源代码中主要 ...

  4. Linux 的启动流程(转)

    原文链接:http://blog.jobbole.com/46078/ 半年前,我写了<计算机是如何启动的?>,探讨BIOS和主引导记录的作用. 那篇文章不涉及操作系统,只与主板的板载程序 ...

  5. LOB字段存放在指定表空间 清理CLOB字段及压缩CLOB空间

     LOB字段存放在指定表空间 清理CLOB字段及压缩CLOB空间    把LOB字段的SEGMENT 存放在指定表空间.清理CLOB字段及压缩CLOB空间 1.创建LOB字段存放表空间:create ...

  6. Android Multiple Screens Android 屏幕适配的一些总结

    作为一名Android应用开发程序猿,最痛苦的事莫过于在屏幕适配了,这与历史原因有关,具体就不深究了. 直到最近才搞明白dpi是怎么换算的,在开发的过程中,一个应用运行的屏幕标准应该是分辨率为320x ...

  7. 【推荐】最新国外免费空间网站Hostinger

    英国最大的免费网站托管服务提供商! http://api.hostinger.co.uk/redir/6703404 Hostinger免费版包括以下内容:  - 2000 MB的磁盘空间 - 100 ...

  8. [转载] A set of top Computer Science blogs

    This started out as a list of top Computer Science blogs, but it more closely resembles a set: the o ...

  9. C# Use Pop3Client to read gmail

    host = "pop.gmail.com" user = "xxxxx@gmail.com" password = "xxxx" port ...

  10. Xcode8新特性和iOS10新特性

    从 Xcode 8.0 开始,目前所有的插件都无法工作! NSLog 无法输出 -- 此bug等待正式版本... Xcode 提供了文档注释快捷键option + cmd + / 但是要把系统升级到1 ...