OpenStack Swift集群部署流程与简单使用
之前介绍了《OpenStack Swift All In One安装部署流程与简单使用》,那么接下来就说一说Swift集群部署吧。
1. 简介
本文档详细描述了使用两台PC部署一个小型Swift集群的过程,并给出一些简单的使用实例。本文档假定如下前提条件:
- 使用Ubuntu操作系统。
- 每台机器都运行Swift的所有服务,既是Proxy Server,又是Storage Server,用户可以向任何一台机器发起存储服务请求。
- 采用Swift自带的TempAuth作为用户的身份与权限认证。
- 所有机器构成memcached集群来提供Token缓存服务。
- 所有操作均在root用户下进行,并使用root作为Swift的用户和组。
- 所有机器都运行在局域网中。
- 使用回环设备和XFS文件系统作为Swift底层存储。
阅读本文档前,可以先阅读文档《Swift All In One安装部署流程》,学习Swift单机部署的相关知识。
2. 安装部署
2.1 准备环境
|
PC 1 |
PC 2 |
机器类型: |
PC物理机 |
PC物理机 |
操作系统: |
Ubuntu-12.04-desktop-64位 |
Ubuntu-12.04-desktop-64位 |
用户类型: |
root |
root |
数据库: |
sqlite3 |
sqlite3 |
IP地址: |
192.168.3.52(局域网) |
192.168.3.53(局域网) |
Proxy Server: |
是 |
是 |
Storage Server: |
是 |
是 |
Auth: |
TempAuth |
TempAuth |
Token缓存: |
memcached |
memcached |
2.2 版本说明
本文档基于:
- 官方文档:Swift 1.7.7-dev documentation -> Instructions for a Multiple Server Swift Installation (Ubuntu)
- Swift版本:1.7.6
- python-swiftclient版本:1.2.0
请确保安装的Swift版本与本文档中的版本相同。如有问题,请参考官网的更新文档。
2.3 安装软件环境
首先,在PC1和PC2上安装Swift所需的软件环境(确保你的机器可以访问互联网),例如,sqlite3作为本地数据库,memcached作为Token缓存。Ubuntu-12.04已自带rsync工具,因此不用另行安装。
# apt-get install python-software-properties # add-apt-repository ppa:swift-core/release # apt-get update # apt-get install curl gcc git-core memcached python-coverage python-dev python-nose python-setuptools python-simplejson python-xattr sqlite3 xfsprogs python-eventlet python-greenlet python-pastedeploy python-netifaces python-pip # pip install mock |
2.4 安装Swift
在PC1和PC2上执行以下操作,安装Swift服务:
1. 在主目录(root用户)下创建swift目录。然后在该下创建bin目录,用于存放我们手动创建的Swift相关脚本文件。
# mkdir ~/swift # mkdir –p ~/swift/bin |
2. 进入~/swift目录,然后从git上获取Swift和python-swiftclient源代码,下载到本地。当然也可以使用以前下载的1.7.6版本的Swift代码和1.2.0版本的python-swiftclient代码,将代码目录放至~/swift目录下即可。
# cd ~/swift # git clone https://github.com/openstack/swift.git # git clone https://github.com/openstack/python-swiftclient.git |
3. 然后使用上述代码以开发的方式安装Swift和python-swiftclient(假设Swift的代码目录为~/swift/swift_1.7.6,python-swiftclient的代码目录为~/swift/python-swiftclient_1.2.0)。最终,两者都会被安装到python的dist-packages中。
# cd ~/swift/swift_1.7.6 # python setup.py develop # cd ~/swift/python-swiftclient_1.2.0 # python setup.py develop |
4. 安装过程中,会自动检查其所需的依赖项,并自动进行下载安装。文件~/swift/swift_1.7.6/tools/pip-requires中(内容如下所示)记录了Swift所需的依赖项,setup.py就是根据该文件来检查依赖项的。
eventlet>=0.9.15 greenlet>=0.3.1 netifaces>=0.6 pastedeploy>=1.3.3 simplejson>=2.0.9 xattr>=0.4 python-swiftclient |
5. 类似的,文件~/swift/python-swiftclient_1.2.0/tools/pip-requires中(内容如下所示)记录了python-swiftclient所需的依赖项。
simplejson |
6. 修改~/.bashrc文件,在文件尾部添加如下内容:(该文件包含当前用户Bash Shell的环境变量信息,用以标明Swift测试配置文件路径和启动程序路径)
export SWIFT_TEST_CONFIG_FILE=/etc/swift/test.conf export PATH=${PATH}:~/swift/bin |
7. 然后执行如下命令,以使修改生效。一旦生效,终生有效哦亲!。
# . ~/.bashrc |
8. 创建/var/run/swift目录,并修改其权限。该目录是Swift运行时所需的,用于存放各个服务进程的pid文件等内容。
# mkdir -p /var/run/swift # chown root:root /var/run/swift |
9. /var/run/swift目录在操作系统关闭后会消失,因此需要在操作系统再次启动时进行创建。我们可以编辑/etc/rc.local文件,在exit 0 之前添加如下内容来实现该目录的自动创建。
mkdir -p /var/run/swift chown root:root /var/run/swift |
2.5 配置Storage Server
2.5.1 配置存储空间
Swift能够运行在任何支持扩展属性的现代文件系统之上,Swift官方推荐用户使用XFS文件系统。经过官方的验证,认为XFS文件系统能为Swift的用例提供最佳的性能,并且通过了完整的稳定性测试。
对于任何一台PC,我们可以选择使用一个分区作为存储(Using a partition for storage),也可以使用一个回环设备作为存储(Using a loopback device for storage)。由于实验环境所限,本文档使用回环设备作为存储。若希望使用独立分区作为存储,请参考官方文档。我们需要在每一台PC上创建回环设备,作为每一个Swift节点的数据存储空间。在PC1和PC2上执行以下操作:
1. 选择一个位置创建存储文件夹。
# mkdir /srv |
2. 在存储文件夹中创建XFS格式的回环设备,即/srv/swift-disk文件。
- 第一条命令:if=/dev/zero表示空输入,即自动填充0;of=/srv/swift-disk表示输出到指定文件;bs=1024表示同时设置读入/输出的块大小(字节),即每次读入/输出1024字节的数据块;count=0表示拷贝0个块,块大小由bs指定;seek=50000000从输出文件开头跳过50000000个块后再开始复制。第一条命令的结果是创建了一个50000000*1024字节大小的文件(约50GB,未自动填充0),为创建回环设备做准备。
- 第二条命令:.xfs表示创建的是XFS格式的回环设备;-i size=1024,当数据小于1024KB时,写入inode中,当数据大于1024KB时,写入block中,默认值为256KB;还可以考虑设置-l size=128m,可显著提升XFS文件系统删除文件、拷贝文件等操作的速度,但需要大内存的支持,默认值的是10m。第二条命令的结果是在上述文件的基础上创建了XFS回环设备。
# dd if=/dev/zero of=/srv/swift-disk bs=1024 count=0 seek=50000000 # mkfs.xfs -f -i size=1024 /srv/swift-disk |
3. 编辑/etc/fstab文件,在文件末尾添加如下内容:
/srv/swift-disk /srv/node/sdb1 xfs loop,noatime,nodiratime,nobarrier,logbufs=8 0 0 |
4. 创建回环设备挂载点文件夹,并执行挂载。
# mkdir -p /srv/node/sdb1 # mount /srv/node/sdb1 |
5. 改变挂载点文件夹的权限。
# chown -R root:root /srv/node |
2.5.2 配置Swift
在PC1和PC2上创建Swift的配置文件目录。
# mkdir -p /etc/swift # chown -R root:root /etc/swift/ |
在PC1中创建配置文件/etc/swift/swift.conf,编辑其内容(如下所示),然后复制到PC2中的/etc/swift目录下。该文件记录了Swift使用的哈希后缀,用于一致性哈希计算。集群中的每个节点都必须保存该文件,并且完全相同。
[swift-hash] # random unique string that can never change (DO NOT LOSE) swift_hash_path_suffix = jtangfs |
2.5.3 配置rsync
rsync是类Unix系统下的数据镜像备份工具。Swift对象副本的复制更新是基于推送模式的。对象的复制更新使用rsync将文件同步到对等节点,Account和Container的复制更新则通过HTTP或rsync来推送数据库文件上丢失的记录。在PC1和PC2上创建rsync的配置文件/etc/rsyncd.conf,添加如下内容:(下面以PC1为例,其中的address是PC1上rsync服务端监听的IP地址,等待客户端推送复制更新,这里同样推荐设置为内网地址)
uid = root gid = root log file = /var/log/rsyncd.log pid file = /var/run/rsyncd.pid address = 192.168.3.52 [account] max connections = 2 path = /srv/node/ read only = false lock file = /var/lock/account.lock [container] max connections = 2 path = /srv/node/ read only = false lock file = /var/lock/container.lock [object] max connections = 2 path = /srv/node/ read only = false lock file = /var/lock/object.lock |
为了使rsync能够开机启动,需要在PC1和PC2上编辑配置文件/etc/default/rsync,将参数RSYNC_ENABLE设置为true,然后启动rsync服务。
# perl -pi -e 's/RSYNC_ENABLE=false/RSYNC_ENABLE=true/' /etc/default/rsync # service rsync restart |
2.5.4 配置存储服务(account, container, object)
在PC1和PC2上执行以下操作,以完成每个节点上的account、container和object存储服务的配置。下面以PC1上的操作为例。
1. 配置account存储服务,创建配置文件/etc/swift/account-server.conf,并添加以下内容:(其中,devices参数表示Parent directory of where devices are mounted,默认值为/srv/node;log_facility表示日志标签,与独立日志的配置有关)
[DEFAULT] devices = /srv/node mount_check = false bind_ip = 192.168.3.52 bind_port = 6002 workers = 4 user = root log_facility = LOG_LOCAL4 [pipeline:main] pipeline = account-server [app:account-server] use = egg:swift#account [account-replicator] [account-auditor] [account-reaper] |
2. 配置container存储服务,创建配置文件/etc/swift/container-server.conf,并添加以下内容:
[DEFAULT] devices = /srv/node mount_check = false bind_ip = 192.168.3.52 bind_port = 6001 workers = 4 user = root log_facility = LOG_LOCAL3 [pipeline:main] pipeline = container-server [app:container-server] use = egg:swift#container [container-replicator] [container-updater] [container-auditor] [container-sync] |
3. 配置object存储服务,创建配置文件/etc/swift/object-server.conf,并添加以下内容:
[DEFAULT] devices = /srv/node mount_check = false bind_ip = 192.168.3.52 bind_port = 6000 workers = 4 user = root log_facility = LOG_LOCAL2 [pipeline:main] pipeline = object-server [app:object-server] use = egg:swift#object [object-replicator] [object-updater] [object-auditor] |
2.5.5 配置独立日志(可选)
Swift默认将日志信息输出到文件/var/log/syslog中。如果要按照个人需求设置rsyslog,生成特有的Swift日志文件,则需要在PC1和PC2上执行以下操作,完成独立日志的配置。
1. 创建日志配置文件/etc/rsyslog.d/10-swift.conf,编辑内容如下:(增加account、container、object的日志配置信息)
# Uncomment the following to have a log containing all logs together #local1,local2,local3,local4,local5.* /var/log/swift/all.log # Uncomment the following to have hourly proxy logs for stats processing $template HourlyProxyLog,"/var/log/swift/hourly/%$YEAR%%$MONTH%%$DAY%%$HOUR%" #local1.*;local1.!notice ?HourlyProxyLog local2.*;local2.!notice /var/log/swift/object.log local2.notice /var/log/swift/ object.error local2.* ~ local3.*;local3.!notice /var/log/swift/container.log local3.notice /var/log/swift/ container.error local3.* ~ local4.*;local4.!notice /var/log/swift/account.log local4.notice /var/log/swift/ account.error local4.* ~ |
2. 编辑文件/etc/rsyslog.conf,更改参数$PrivDropToGroup为adm。
$PrivDropToGroup adm |
3. 创建/var/log/swift目录,用于存放独立日志。此外,上面的10-swift.conf 文件中设置了输出Swift Proxy Server每小时的stats日志信息,于是也要创建/var/log/swift/hourly目录。
# mkdir -p /var/log/swift/hourly |
4. 更改Swift独立日志目录的权限。
# chown -R syslog.adm /var/log/swift # chmod -R g+w /var/log/swift |
5. 重启rsyslog服务
# service rsyslog restart |
2.6 配置Proxy Server
2.6.1 配置memcached
Proxy Server使用memcached来缓存用户的Token。我们可根据具体需求修改memcached配置文件/etc/memcached.conf。例如,考虑到安全因素,只允许memcached在局域网内被访问,则应将其监听的IP地址修改为局域网IP地址(默认为127.0.0.1,内外网通吃)。推荐配置为内部的、非公网的IP地址。将PC1上的修改为192.168.3.52,PC2上的修改为192.168.3.53,并在完成后重启memcached服务。下面以PC1上执行的命令为例:
# perl -pi -e "s/-l 127.0.0.1/-l 192.168.3.52/" /etc/memcached.conf # service memcached restart |
2.6.2 配置Swift
由于每一台PC都运行Swift的所有服务,既作为Proxy Server,又作为Storage Server,上面在配置Storage Server时已经完成了Swift的配置,此处可省略。但是,如果Proxy Server和Storage Server是分离的,那么就需要将上面的swift.conf文件复制到Proxy Server中的/etc/swift目录下。
2.6.3 配置proxy-server
在PC1和PC2上创建proxy-server配置文件/etc/swift/proxy-server.conf,添加以下内容:
[DEFAULT] bind_port = 8080 user = root workers = 8 log_facility = LOG_LOCAL1 [pipeline:main] pipeline = healthcheck cache tempauth proxy-logging proxy-server [app:proxy-server] use = egg:swift#proxy allow_account_management = true account_autocreate = true [filter:tempauth] use = egg:swift#tempauth user_admin_admin = admin .admin .reseller_admin user_test_tester = testing .admin user_test2_tester2 = testing2 .admin user_test_tester3 = testing3 reseller_prefix = AUTH # account和token的命名前缀,注意此处不可以加“_”。 # 例如X-Storage-Url为http://192.168.3.52:8080/v1/AUTH_test # 例如X-Auth-Token为AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1 token_life = 86400 # token的有效期,单位:秒。 [filter:healthcheck] use = egg:swift#healthcheck [filter:cache] use = egg:swift#memcache memcache_servers = 192.168.3.52:11211,192.168.3.53:11211 [filter:proxy-logging] use = egg:swift#proxy_logging |
配置参数中:memcache_servers指定memcached地址,可配置为集群,以“,”分隔;workers为工作线程数,推荐配置为CPU核心数的2-4倍;“user_admin_admin = admin .admin .reseller_admin”中,user_为前缀,第一个“admin”为账户名,第二个“admin”为用户名,第三个“admin为”密码,“.admin”为角色信息,“.reseller_admin”表示超级管理员角色(可操作任何账户)。
“user_admin_admin = admin .admin .reseller_admin”后面还可以增加一项<storage-url>,显示地指定Swift为该用户提供的存储服务入口(PC1为admin用户提供的默认值是http://192.168.3.52:8080/v1/AUTH_admin)。admin用户通过认证后,Swift会把Token和该<storage-url>返回给用户,此后admin用户可以使用该<storage-url>访问Swift来请求存储服务。特别值得说明的是,如果在Proxy Server前面增加了负载均衡器(如nginx),那么该<storage-url>应该指向负载均衡器,使得用户在通过认证后,向负载均衡器发起存储请求,再由负载均衡器将请求均衡地分发给Proxy Server集群。此时的<storage-url>形如http://<LOAD_BALANCER_HOSTNAME>:<PORT>/v1/AUTH_admin。
Swift同时支持http和https协议,本文档中我们使用http协议,若想使用https协议,则需要进行ssl的配置,具体操作请查看参考链接中的内容。
2.6.4 配置独立日志(可选)
上文中已经做了说明,此处可用于设置Proxy Server的独立日志,需要在PC1和PC2上执行以下操作,完成其配置。
1. 编辑日志配置文件/etc/rsyslog.d/10-swift.conf,增加proxy的日志配置信息:
# Uncomment the following to have a log containing all logs together #local1,local2,local3,local4,local5.* /var/log/swift/all.log # Uncomment the following to have hourly proxy logs for stats processing $template HourlyProxyLog,"/var/log/swift/hourly/%$YEAR%%$MONTH%%$DAY%%$HOUR%" #local1.*;local1.!notice ?HourlyProxyLog local1.*;local1.!notice /var/log/swift/proxy.log local1.notice /var/log/swift/ proxy.error local1.* ~ local2.*;local2.!notice /var/log/swift/object.log local2.notice /var/log/swift/ object.error local2.* ~ local3.*;local3.!notice /var/log/swift/container.log local3.notice /var/log/swift/ container.error local3.* ~ local4.*;local4.!notice /var/log/swift/account.log local4.notice /var/log/swift/ account.error local4.* ~ |
2. 重启rsyslog服务
# service rsyslog restart |
2.6.5 创建Ring
Ring共有三种,分别为Account Ring、Container Ring、Object Ring。Ring需要在整个集群中保持完全相同,因此需要在某一台PC上创建Ring文件,然后复制到其他PC上。我们将在PC1上进行Ring的创建,然后复制到PC2上。
首先,使用如下命令创建三个Ring。其中,18表示Ring的分区数为218;2表示对象副本数为2;1表示分区数据的迁移时间为1小时(这个解释有待证实)。
# cd /etc/swift # swift-ring-builder account.builder create 18 2 1 # swift-ring-builder container.builder create 18 2 1 # swift-ring-builder object.builder create 18 2 1 |
然后向三个Ring中添加存储设备。其中z1和z2表示zone1和zone2;sdb1为Swift使用的存储空间,即上文挂在的回环设备;100代表设备的权重。
# cd /etc/swift # swift-ring-builder account.builder add z1-192.168.3.52:6002/sdb1 100 # swift-ring-builder container.builder add z1-192.168.3.52:6001/sdb1 100 # swift-ring-builder object.builder add z1-192.168.3.52:6000/sdb1 100 # swift-ring-builder account.builder add z2-192.168.3.53:6002/sdb1 100 # swift-ring-builder container.builder add z2-192.168.3.53:6001/sdb1 100 # swift-ring-builder object.builder add z2-192.168.3.53:6000/sdb1 100 |
Ring文件创建完毕后,可以通过以下命令来查看刚才添加的信息,以验证是否输入正确。若发现错误,以Account Ring为例,可以使用swift-ring-builder account.builder的删除方法删除已添加的设备,然后重新添加。
# cd /etc/swift # swift-ring-builder account.builder # swift-ring-builder container.builder # swift-ring-builder object.builder |
完成设备的添加后,我们还需要创建Ring的最后一步,即平衡环。这个过程需要消耗一些时间。成功之后,会在当前目录生成account.ring.gz、container.ring.gz和object.ring.gz三个文件,这三个文件就是所有节点(包括Proxy Server和Storage Server)要用到的Ring文件。我们需要将这三个文件拷贝到PC2中的/etc/swift目录下。
# cd /etc/swift # swift-ring-builder account.builder rebalance # swift-ring-builder container.builder rebalance # swift-ring-builder object.builder rebalance |
由于我们统一采用root用户部署,所以要确保所有节点上的/etc/swift目录都属于root用户。
# chown -R root:root /etc/swift |
2.7 创建Swift执行脚本
为便于操作,我们可以在PC1和PC2上创建以下Swift脚本。
1. 创建~/swift/bin/remakerings脚本文件,添加以下内容,即可一键完成Ring的重新创建,当然具体内容需要根据实际环境进行修改。
#!/bin/bash cd /etc/swift rm -f *.builder *.ring.gz backups/*.builder backups/*.ring.gz swift-ring-builder account.builder create 18 2 1 swift-ring-builder container.builder create 18 2 1 swift-ring-builder object.builder create 18 2 1 swift-ring-builder account.builder add z1-192.168.3.52:6002/sdb1 100 swift-ring-builder container.builder add z1-192.168.3.52:6001/sdb1 100 swift-ring-builder object.builder add z1-192.168.3.52:6000/sdb1 100 swift-ring-builder account.builder add z2-192.168.3.53:6002/sdb1 100 swift-ring-builder container.builder add z2-192.168.3.53:6001/sdb1 100 swift-ring-builder object.builder add z2-192.168.3.53:6000/sdb1 100 swift-ring-builder account.builder rebalance swift-ring-builder container.builder rebalance swift-ring-builder object.builder rebalance |
2. 创建~/swift/bin/resetswift脚本文件,添加以下内容,即可一键清空Swift的对象数据和日志,完成重置。注意:如果使用的是独立分区存储,则需要另行处理,例如将/srv/swift-disk替换为/dev/sdb1等;如果没有使用rsyslog作为独立日志,则需要去掉“find /var/log/swift... ”和“sudo service rsyslog restart”这两行。
#!/bin/bash swift-init all stop find /var/log/swift -type f -exec rm -f {} \; sudo umount /srv/node/sdb1 sudo mkfs.xfs -f -i size=1024 /srv/swift-disk sudo mount /srv/node/sdb1 sudo chown root:root /srv/node/sdb1 sudo rm -f /var/log/debug /var/log/messages /var/log/rsyncd.log /var/log/syslog sudo service rsyslog restart sudo service rsync restart sudo service memcached restart |
3. 创建~/swift/bin/startmain脚本文件,添加以下内容,即可一键启动Swift的基本服务,包括proxy-server、account-server、container-server和object-server。
#!/bin/bash swift-init main start |
4. 创建~/swift/bin/stopmain脚本文件,添加以下内容,即可一键关闭Swift的基本服务,包括proxy-server、account-server、container-server和object-server。
#!/bin/bash swift-init main stop |
5. 创建~/swift/bin/startall脚本文件,添加以下内容,即可一键启动Swift的所有服务,包括proxy-server、account-server、account-replicator 、account-auditor、container-server、container-replicator、container-updater、container-auditor、object-server、object-replicator、object-updater、object-auditor。
#!/bin/bash swift-init proxy start swift-init account-server start swift-init account-replicator start swift-init account-auditor start swift-init container-server start swift-init container-replicator start swift-init container-updater start swift-init container-auditor start swift-init object-server start swift-init object-replicator start swift-init object-updater start swift-init object-auditor start |
6. 创建~/swift/bin/stopall脚本文件,添加以下内容,即可一键关闭Swift的所有服务,包括proxy-server、account-server、account-replicator 、account-auditor、container-server、container-replicator、container-updater、container-auditor、object-server、object-replicator、object-updater、object-auditor。
#!/bin/bash swift-init proxy stop swift-init account-server stop swift-init account-replicator stop swift-init account-auditor stop swift-init container-server stop swift-init container-replicator stop swift-init container-updater stop swift-init container-auditor stop swift-init object-server stop swift-init object-replicator stop swift-init object-updater stop swift-init object-auditor stop |
7. 完成脚本创建后,需要更改脚本权限,使之能够执行。
# chmod +x ~/swift/bin/* |
2.8 启动与关闭Swift服务
由于我们是以开发的方式安装Swift的,所以能够执行功能单元测试。若提示“Unable to read test config /etc/swift/test.conf – file not found”,可不必理会,或手动将配置文件~/swift/swift_1.7.6/test/sample.conf复制过去。
# cd ~/swift/swift_1.7.6 # ./.unittests |
我们需要在PC1和PC2上启动Proxy Server和Storage Server的服务。为了便于操作,我们直接使用上文中创建的脚本文件(在~/swift/bin目录下)运行Swift。可以使用~/swift/bin/startmain脚本文件启动Swift的基本服务;或使用~/swift/bin/startall脚本文件键启动Swift的所有服务。若提示“Unable to increase file descriptor limit. Running as non-root?”警告为正常现象,不必理会。
# startmain 或 # startall |
同样的,我们可以使用~/swift/bin/stopmain脚本文件关闭Swift的基本服务;使用~/swift/bin/stopall脚本文件键关闭Swift的所有服务。
# stopmain 或 # stopall |
2.9 查看Swift帮助信息
完成安装部署后,可以使用swift --help命令查看Swift帮助信息。
# swift --help Usage: swift <command> [options] [args] Commands: stat [container] [object] Displays information for the account, container, or object depending on the args given (if any). list [options] [container] Lists the containers for the account or the objects for a container. -p or --prefix is an option that will only list items beginning with that prefix. -d or --delimiter is option (for container listings only) that will roll up items with the given delimiter (see Cloud Files general documentation for what this means). upload [options] container file_or_directory [file_or_directory] [...] Uploads to the given container the files and directories specified by the remaining args. -c or --changed is an option that will only upload files that have changed since the last upload. -S <size> or --segment-size <size> and --leave-segments are options as well (see --help for more). post [options] [container] [object] Updates meta information for the account, container, or object depending on the args given. If the container is not found, it will be created automatically; but this is not true for accounts and objects. Containers also allow the -r (or --read-acl) and -w (or --write-acl) options. The -m or --meta option is allowed on all and used to define the user meta data items to set in the form Name:Value. This option can be repeated. Example: post -m Color:Blue -m Size:Large download --all OR download container [options] [object] [object] ... Downloads everything in the account (with --all), or everything in a container, or a list of objects depending on the args given. For a single object download, you may use the -o [--output] <filename> option to redirect the output to a specific file or if "-" then just redirect to stdout. delete [options] --all OR delete container [options] [object] [object] ... Deletes everything in the account (with --all), or everything in a container, or a list of objects depending on the args given. Segments of manifest objects will be deleted as well, unless you specify the --leave-segments option. Example: swift -A https://auth.api.rackspacecloud.com/v1.0 -U user -K key stat Options: --version show program's version number and exit -h, --help show this help message and exit -s, --snet Use SERVICENET internal network -v, --verbose Print more info -q, --quiet Suppress status output -A AUTH, --auth=AUTH URL for obtaining an auth token -V AUTH_VERSION, --auth-version=AUTH_VERSION Specify a version for authentication. Defaults to 1.0. -U USER, --user=USER User name for obtaining an auth token. -K KEY, --key=KEY Key for obtaining an auth token. --os-username=<auth-user-name> Openstack username. Defaults to env[OS_USERNAME]. --os-password=<auth-password> Openstack password. Defaults to env[OS_PASSWORD]. --os-tenant-id=<auth-tenant-id> OpenStack tenant ID. Defaults to env[OS_TENANT_ID] --os-tenant-name=<auth-tenant-name> Openstack tenant name. Defaults to env[OS_TENANT_NAME]. --os-auth-url=<auth-url> Openstack auth URL. Defaults to env[OS_AUTH_URL]. --os-auth-token=<auth-token> Openstack token. Defaults to env[OS_AUTH_TOKEN] --os-storage-url=<storage-url> Openstack storage URL. Defaults to env[OS_STORAGE_URL] --os-region-name=<region-name> Openstack region name. Defaults to env[OS_REGION_NAME] --os-service-type=<service-type> Openstack Service type. Defaults to env[OS_SERVICE_TYPE] --os-endpoint-type=<endpoint-type> Openstack Endpoint type. Defaults to env[OS_ENDPOINT_TYPE] --insecure Allow swiftclient to access insecure keystone server. The keystone's certificate will not be verified. |
3. 使用实例
启动PC1和PC2上的Swift服务后,我们交替地在PC1和PC2上执行操作,并随机使用两者提供的storage-url,如果用户验证和存储服务全部正确,则表明Swift集群部署成功。
3.1 用curl测试
我们先使用curl测试几个简单的命令。
1. 在PC1上访问192.168.3.52,进行tester用户验证,获取Token和storage-url。
# curl -k -v -H 'X-Storage-User: test:tester' -H 'X-Storage-Pass: testing' http://192.168.3.52:8080/auth/v1.0 |
* About to connect() to 192.168.3.52 port 8080 (#0) * Trying 192.168.3.52... connected > GET /auth/v1.0 HTTP/1.1 > User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3 > Host: 192.168.3.52:8080 > Accept: */* > X-Storage-User: test:tester > X-Storage-Pass: testing > < HTTP/1.1 200 OK < X-Storage-Url: http://192.168.3.52:8080/v1/AUTH_test < X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1 < Content-Type: text/html; charset=UTF-8 < X-Storage-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1 < Content-Length: 0 < Date: Wed, 20 Mar 2013 06:13:15 GMT < * Connection #0 to host 192.168.3.52 left intact * Closing connection #0 |
2. 在PC1上访问192.168.3.52,查看test账户的状态信息。
# curl -k -v -H 'X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1' http://192.168.3.52:8080/v1/AUTH_test |
* About to connect() to 192.168.3.52 port 8080 (#0) * Trying 192.168.3.52... connected > GET /v1/AUTH_test HTTP/1.1 > User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3 > Host: 192.168.3.52:8080 > Accept: */* > X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1 > < HTTP/1.1 204 No Content < Content-Length: 0 < Accept-Ranges: bytes < X-Timestamp: 1363760036.52552 < X-Account-Bytes-Used: 0 < X-Account-Container-Count: 0 < Content-Type: text/html; charset=UTF-8 < X-Account-Object-Count: 0 < Date: Wed, 20 Mar 2013 06:13:56 GMT < * Connection #0 to host 192.168.3.52 left intact * Closing connection #0 |
3. 在PC1上访问192.168.3.53,查看test账户的状态信息。
# curl -k -v -H 'X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1' http://192.168.3.53:8080/v1/AUTH_test |
* About to connect() to 192.168.3.53 port 8080 (#0) * Trying 192.168.3.53... connected > GET /v1/AUTH_test HTTP/1.1 > User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3 > Host: 192.168.3.53:8080 > Accept: */* > X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1 > < HTTP/1.1 204 No Content < Content-Length: 0 < Accept-Ranges: bytes < X-Timestamp: 1363760036.52552 < X-Account-Bytes-Used: 0 < X-Account-Container-Count: 0 < Content-Type: text/html; charset=UTF-8 < X-Account-Object-Count: 0 < Date: Wed, 20 Mar 2013 06:15:19 GMT < * Connection #0 to host 192.168.3.53 left intact * Closing connection #0 |
4. 在PC2上访问192.168.3.52,查看test账户的状态信息。
# curl -k -v -H 'X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1' http://192.168.3.52:8080/v1/AUTH_test |
* About to connect() to 192.168.3.52 port 8080 (#0) * Trying 192.168.3.52... connected > GET /v1/AUTH_test HTTP/1.1 > User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3 > Host: 192.168.3.52:8080 > Accept: */* > X-Auth-Token: AUTH_tk440e9bd9a9cb46d6be07a5b6a585f7d1 > < HTTP/1.1 204 No Content < Content-Length: 0 < Accept-Ranges: bytes < X-Timestamp: 1363760036.52552 < X-Account-Bytes-Used: 0 < X-Account-Container-Count: 0 < Content-Type: text/html; charset=UTF-8 < X-Account-Object-Count: 0 < Date: Wed, 20 Mar 2013 06:17:01 GMT < * Connection #0 to host 192.168.3.52 left intact * Closing connection #0 |
上述测试一切正常,表明curl测试通过。
3.2 用Swift客户端测试
接着,我们使用Swift客户端进行测试。
1. 在PC1上访问192.168.3.53,查看test账户的状态信息。
# swift -A http://192.168.3.53:8080/auth/v1.0 -U test:tester -K testing stat |
Account: AUTH_test Containers: 0 Objects: 0 Bytes: 0 Accept-Ranges: bytes X-Timestamp: 1363760036.52552 Content-Type: text/plain; charset=utf-8 |
2. 在PC1上访问192.168.3.52,在test账户下创建名为myfiles的container。
# swift -A http://192.168.3.52:8080/auth/v1.0 -U test:tester -K testing post myfiles |
3. 在PC1上访问192.168.3.53,显示test账户下的container列表。
# swift -A http://192.168.3.53:8080/auth/v1.0 -U test:tester -K testing list |
myfiles |
4. 在PC2上访问192.168.3.52,显示test账户下的container列表。
# swift -A http://192.168.3.52:8080/auth/v1.0 -U test:tester -K testing list |
myfiles |
5. 在PC2上访问192.168.3.53,在刚才创建的container下上传文件。上传完成后,Swift服务端会以完整路径作为文件名。
# swift -A http://192.168.3.53:8080/auth/v1.0 -U test:tester -K testing upload myfiles ~/file |
root/file |
6. 在PC1上访问192.168.3.52,显示刚才创建的container下的文件列表。
# swift -A http://192.168.3.52:8080/auth/v1.0 -U test:tester -K testing list myfiles |
root/file |
7. 在PC1上访问192.168.3.52,下载刚才上传的文件。给定的文件名必须是其完整路径,例如上传的文件为~/file,服务端记录的文件名为root/file,于是下载时也要给文件名root/file,而不能是file。最终,文件会被下载到~/root目录下,成为~/root/file。可以使用额外的命令参数来决定下载位置,详情参考swift --help。
# swift -A http://192.168.3.52:8080/auth/v1.0 -U test:tester -K testing download myfiles root/file |
root/file [headers 0.041s, total 0.065s, 0.000s MB/s] |
上述测试一切正常,表明Swift客户端测试通过。
4. 参考链接
4.1 官方连接
- Instructions for a Multiple Server Swift Installation (Ubuntu)
http://docs.openstack.org/developer/swift/howto_installmultinode.html
- SAIO - Swift All In One
http://docs.openstack.org/developer/swift/development_saio.html
- Swift 1.8.0-dev documentation -> Deployment Guide
http://docs.openstack.org/developer/swift/deployment_guide.html
4.2 非官方链接
- OpenStack Hands on lab 2: Swift安装并使用Keystone做身份验证
http://liangbo.me/index.php/2012/03/29/openstack-hands-on-lab-2-swift-installation-with-keystone/
- OpenStack Swift Install Multi Node
http://blog.csdn.net/zzcase/article/details/6578520
- Swift部署和动态扩展
http://www.kissthink.com/archive/4175.html
- Swift简介(实为深入讲解)
http://www.cnblogs.com/Bob-FD/archive/2012/07/25/2608413.html
- 在Ubuntu上安装OpenStack Swift组件
http://blog.csdn.net/zoushidexing/article/details/7860226
OpenStack Swift集群部署流程与简单使用的更多相关文章
- OpenStack Swift集群与Keystone的整合使用说明
之前已经介绍了OpenStack Swift集群和Keystone的安装部署,最后来讲一讲Swift集群与Keystone的整合使用吧. 1. 简介 本文档描述了Keystone与Swift集群的整合 ...
- openstack——Rabbitmq集群部署
一.前期准备 1.条件:准备3台Linux系统虚拟机,保持系统版本一致,确保配置好yum源,及网络源 2.3台虚拟机做静态解析 [root@yun1 ~]# cat /etc/hosts 12 ...
- 理解 OpenStack Swift (1):OpenStack + 三节点Swift 集群+ HAProxy + UCARP 安装和配置
本系列文章着重学习和研究OpenStack Swift,包括环境搭建.原理.架构.监控和性能等. (1)OpenStack + 三节点Swift 集群+ HAProxy + UCARP 安装和配置 ( ...
- openstack高可用集群21-生产环境高可用openstack集群部署记录
第一篇 集群概述 keepalived + haproxy +Rabbitmq集群+MariaDB Galera高可用集群 部署openstack时使用单个控制节点是非常危险的,这样就意味着单个节 ...
- 理解 OpenStack + Ceph (1):Ceph + OpenStack 集群部署和配置
本系列文章会深入研究 Ceph 以及 Ceph 和 OpenStack 的集成: (1)安装和部署 (2)Ceph RBD 接口和工具 (3)Ceph 物理和逻辑结构 (4)Ceph 的基础数据结构 ...
- openstack pike 集群高可用 安装 部署 目录汇总
# openstack pike 集群高可用 安装部署#安装环境 centos 7 史上最详细的openstack pike版 部署文档欢迎经验分享,欢迎笔记分享欢迎留言,或加QQ群663105353 ...
- RocketMQ 简单梳理 及 集群部署笔记【转】
一.RocketMQ 基础知识介绍Apache RocketMQ是阿里开源的一款高性能.高吞吐量.队列模型的消息中间件的分布式消息中间件. 上图是一个典型的消息中间件收发消息的模型,RocketMQ也 ...
- RocketMQ 简单梳理 及 集群部署笔记
一.RocketMQ 基础知识介绍Apache RocketMQ是阿里开源的一款高性能.高吞吐量.队列模型的消息中间件的分布式消息中间件. 上图是一个典型的消息中间件收发消息的模型,RocketMQ也 ...
- openstack(pike 版)集群部署(一)----基础环境部署
一.环境 1.系统: a.CentOS Linux release 7.4.1708 (Core) b.更新yum源和安装常用软件 # yum -y install epel-release ba ...
随机推荐
- sleep()
经常看到线程中用sleep(),到底是什么用处,下面讲的比较通俗: 我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间.那么你有没有正确的理解这个函数的用法呢?思考下面这两个问题: ...
- mysql 外键(FOREIGN KEY)
最近有开始做一个实验室管理系统,因为分了几个表进行存储·所以要维护表间的关联··研究了一下MySQL的外键. (1)只有InnoDB类型的表才可以使用外键,mysql默认是MyISAM,这种类型不支持 ...
- php + mysql 分布式事务(转)
事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元: 事务应该具有4个属性:原子性.一致性.隔离性.持续性 原子性(atomicity).一个事务是一个不可分割的工作单 ...
- cdrecord光盘烧录工具
我们是透过 cdrecord 这个命令来进行文字介面的烧录行为,这个命令常见的选项有底下数个: [root@www ~]# cdrecord -scanbus dev=ATA <==查询烧录机位 ...
- jQuery 事件用法详解
jQuery 事件用法详解 目录 简介 实现原理 事件操作 绑定事件 解除事件 触发事件 事件委托 事件操作进阶 阻止默认事件 阻止事件传播 阻止事件向后执行 命名空间 自定义事件 事件队列 jque ...
- windows下使用批处理文件调用python程序
这个随笔涉及到几个批处理脚本得知识点. windows的start命令, 启动另一个窗口运行指定的程序或命令. windows的call命令, 从批处理程序调用另一个程序, 直到被调用程序退出, 再继 ...
- 建站时注意敏感词的添加_seo优化禁忌
之前接手一个站点,网站标题中出现一个“三级医院”的词,虽然这个词在我们看来是没有问题的,医院评级中“三级医院”算是等级很高的,很多医院为了体现等级会在明显的地方着重加注.但是我们要考虑一下搜索引擎的分 ...
- tolua.cast的实用方法
local name = (tolua.cast(sender, "ccui.Button")):getTitleText()
- C语言内存对齐详解(1)
一.什么是字节对齐,为什么要对齐? 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这 ...
- Microsoft.ReportViewer.WebForms, Version=10.0.0.0的报错问题,解决方案
未能加载文件或程序集,或者web.config报错! 已解决:直接找到(默认在 路径/Microsoft Visual Studio 8/ReportViewer).把里面的3个DLL传上去就OK了! ...