Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18765    Accepted Submission(s): 7946

Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
 
Sample Input
abcfbc abfcab
programming contest
abcd mnp
 
Sample Output
4
2
0
 
Source
 
Recommend
Ignatius   |   We have carefully selected several similar problems for you:  1087 1176 1058 1069 1421

 
之前做过好多次,一直不解其意,最近重温一遍。现在写下解题心得。
这道题的目的是求出a字符串和b字符串的最长公共子序列,用到动态规划。
动态规划的解法:
  先定义两个字符数组存储两个字符串
—— char a[1000]、b[1000];
  然后再定义一个二维数组,存储求解最终问题过程中产生的所有子问题的解
—— int dp[1001][1001];
最长公共子序列的状态转移方程为:
if(a[i]==b[j])  
    dp[i][j]=dp[i-1][j-1]+1;
else 
    dp[i][j]=dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1];
根据以上写出程序即可。
另外摘取别人的一段对动态规划的解释:
【动态规划法】
  经常会遇到复杂的问题不能简单的分解成几个子问题,而会分解出一系列的子问题。简单的采用把大问题分解成子问题,并综合所有子问题的解求出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
  为了节约重复求相同子问题的时间,引入一个数组,不管他们是否对最终解有用,把所有子问题的解存于数组中,这就是动态规划法所采用的基本做法。
 
网易公开课的《算法导论》也有详细的讲解:
 
下面给出代码:
【C++】
 #include <iostream>

 using namespace std;
int dp[][];
int main()
{
//dp[i][j]代表着a取前i个字符和b取前j个字符时的最长公共子序列的大小
char a[],b[];
while(cin>>a>>b){
int i,j;
int al,bl;
for(i=;a[i]!='\0';i++); //计算a、b字符串长度
for(j=;b[j]!='\0';j++);
al=i;bl=j; for(i=;i<=al;i++) //dp[][]初始化
dp[i][]=;
for(i=;i<=bl;i++)
dp[][i]=; for(i=;i<=al;i++) //计算dp[][]
for(j=;j<=bl;j++){
if(a[i-]==b[j-])
dp[i][j]=dp[i-][j-]+;
else
dp[i][j] = dp[i-][j] > dp[i][j-] ? dp[i-][j] : dp[i][j-];
} cout<<dp[al][bl]<<endl;
}
return ;
}
【C】
 #include <stdio.h>
#include <stdlib.h>
int dp[][];
int main()
{
char a[],b[];
while(scanf("%s%s",a,b)!=EOF){
int i,j;
int al,bl;
for(i=;a[i]!='\0';i++);
for(j=;b[j]!='\0';j++);
al=i;bl=j;
for(i=;i<=al;i++)
dp[i][]=;
for(j=;j<=bl;j++)
dp[][j]=;
for(i=;i<=al;i++)
for(j=;j<=bl;j++){
if(a[i-]==b[j-])
dp[i][j] = dp[i-][j-]+;
else
dp[i][j] = dp[i-][j] > dp[i][j-] ? dp[i-][j] : dp[i][j-];
}
printf("%d\n",dp[al][bl]);
}
return ;
}

Freecode : www.cnblogs.com/yym2013

hdu 1159:Common Subsequence(动态规划)的更多相关文章

  1. HDU 1159 Common Subsequence 动态规划

    2017-08-06 15:41:04 writer:pprp 刚开始学dp,集训的讲的很难,但是还是得自己看,从简单到难,慢慢来(如果哪里有错误欢迎各位大佬指正) 题意如下: 给两个字符串,找到其中 ...

  2. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  3. HDU 1159 Common Subsequence

    HDU 1159 题目大意:给定两个字符串,求他们的最长公共子序列的长度 解题思路:设字符串 a = "a0,a1,a2,a3...am-1"(长度为m), b = "b ...

  4. HDU 1159 Common Subsequence 公共子序列 DP 水题重温

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  5. hdu 1159 Common Subsequence(最长公共子序列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  6. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  7. HDU 1159 Common Subsequence(裸LCS)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  8. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. HDU 1159.Common Subsequence【动态规划DP】

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

随机推荐

  1. sprintf

    功能:将数据格式化到字符串中 原型:int sprintf( char *buffer, const char *format, [ argument] … );返回值是这个字符串的长度 上次我企图这 ...

  2. Jsonp简单认识(后端使用的是asp.net mvc)

    一.Jsonp简介:由于浏览器基于安全有同源策略(同源策略阻止从一个源加载的文档或脚本获取或设置另一个源加载的文档的属性)机制,所以前端无法使用Ajax来获取来获取其他域名下返回的数据,而Jsonp可 ...

  3. Java-java中的有符号,无符号操作以及DataInputStream

    1. 无符号和有符号 计算机中用补码表示负数,并且有一定的计算方式:另外,用二进制的最高位表示符号,0表示正数.1表示负数.这种说法本身没错,可是要有一定的解释,不然它就是错的,至少不能解释,为什么字 ...

  4. Bootstrap速学教程之简要介绍

    Bootstrap是Twitter推出的一个用于前端开发的开源工具包,由Twitter的设计师Mark Otto和Jacob Thornton合作开发,是一个CSS/HTML框架,不用请UI设计师也能 ...

  5. editplus快捷键大全之editplus编辑快捷键

    前面我们说了editplus快捷键大全之editplus文件快捷键和editplus快捷键大全之editplus光标快捷键,这里我们讲一下editplus快捷键大全之editplus编辑快捷键 删除光 ...

  6. Python webpy微信公众号开发之 回复图文消息

    新建图文回复模板reply_pictext.xml: $def with (toUser,fromUser,createTime,title1,description1,picurl1,url1)&l ...

  7. Atlas安装及配置

    ==============linux下快捷键==================ctrl+insert 复制shift +insert 粘贴 输入文件名的前三个字母,按tab键自动补全文件名 在vi ...

  8. ios数据库

    1. ios数据库管理软件 ios使用的数据库是sqlite 管理软件有2种, 我只记得一种, 名字叫做 MesaSQLite 2. sqlite数据库 2.1.修改表结构 ①:更改字段类型长度 AL ...

  9. IOS model的getter和setter方法

    总结: 当使用 self.str1 = @"xxx";时, 系统自动调用 setter方法 param_str = self.str1; 自动调用getter方法注意: 只在对象点 ...

  10. linux 文件权限除了r、w、x外还有s、t、i、a权限:

    s:文件属主和组设置SUID和GUID,文件在被设置了s权限后将以root身份执行.在设置s权限时文件属主.属组必须先设置相应的x权限,否 则s权限并不能正真生效(c h m o d命令不进行必要的完 ...