题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3401

Trade

Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
#### 问题描述
> Recently, lxhgww is addicted to stock, he finds some regular patterns after a few days' study.
> He forecasts the next T days' stock market. On the i'th day, you can buy one stock with the price APi or sell one stock to get BPi.
> There are some other limits, one can buy at most ASi stocks on the i'th day and at most sell BSi stocks.
> Two trading days should have a interval of more than W days. That is to say, suppose you traded (any buy or sell stocks is regarded as a trade)on the i'th day, the next trading day must be on the (i+W+1)th day or later.
> What's more, one can own no more than MaxP stocks at any time.
>
> Before the first day, lxhgww already has infinitely money but no stocks, of course he wants to earn as much money as possible from the stock market. So the question comes, how much at most can he earn?

输入

The first line is an integer t, the case number.

The first line of each case are three integers T , MaxP , W .

(0 <= W < T <= 2000, 1 <= MaxP <= 2000) .

The next T lines each has four integers APi,BPi,ASi,BSi( 1<=BPi<=APi<=1000,1<=ASi,BSi<=MaxP), which are mentioned above.

输出

The most money lxhgww can earn.

样例输入

1

5 2 0

2 1 1 1

2 1 1 1

3 2 1 1

4 3 1 1

5 4 1 1

样例输出

3

题意

一个人,一开始有无数的钱和0张股票,接下来的t天里,在第i天,他能够选择以api的价格买进一张股票,且最多允许买asi张;或者以bpi的价格卖出股票,且最多卖出bpi张。任何时刻手头的股票不能超过maxp张,且任意两次交易需要隔至少w天。问最多能赚多少钱。

题解

dp[i][j]表示第i天持有j张股票。

则易知:dp[i][j]=max{dp[i-1][j],dp[i-w-1][k]-(j-k)*api(买入),dp[i-w-1][k]+(k-j)*bpi)(卖出)}

因为当j固定时只需找出max{dp[i-w-1][k]+k*api(或者bpi)},由于有asi(或者bsi)的限制,所以需要用单调队列来维护一下(否则只需要维护一个最大值就ok了)。所以复杂度是O^2。

代码

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef __int64 LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=2222; int n,maxp,w;
int ap[maxn],bp[maxn],as[maxn],bs[maxn];
///dp[i][j]表示第i天持j张股票
int dp[maxn][maxn];
///单调队列
PII que[maxn]; int main() {
int tc;
scf("%d",&tc);
while(tc--){
scf("%d%d%d",&n,&maxp,&w);
for(int i=0;i<n;i++){
scf("%d%d%d%d",&ap[i],&bp[i],&as[i],&bs[i]);
} ///初始化
for(int i=0;i<n;i++){
for(int j=0;j<=maxp;j++){
dp[i][j]=-INF;
}
}
for(int j=0;j<=min(maxp,as[0]);j++){
dp[0][j]=-ap[0]*j;
} for(int i=1;i<n;i++){
///第i天不进行交易
for(int j=0;j<=maxp;j++){
dp[i][j]=dp[i-1][j];
} ///第i天进行交易
if(i-w-1<0){
for(int j=0;j<=min(maxp,as[i]);j++){
dp[i][j]=max(dp[i][j],-ap[i]*j);
}
continue;
} ///买入
int f=1,r=1;
for(int j=0;j<=maxp;j++){
int x=dp[i-w-1][j]+ap[i]*j;
while(f<r&&que[r-1].X<x) r--;
que[r++]=mkp(x,j);
while(f<r&&que[f].Y+as[i]<j) f++;
dp[i][j]=max(dp[i][j],que[f].X-j*ap[i]);
} ///卖出
f=r=1;
for(int j=maxp;j>=0;j--){
int x=dp[i-w-1][j]+bp[i]*j;
while(f<r&&que[r-1].X<x) r--;
que[r++]=mkp(x,j);
while(f<r&&que[f].Y-bs[i]>j) f++;
dp[i][j]=max(dp[i][j],que[f].X-j*bp[i]);
}
}
int ans=0;
for(int i=0;i<=maxp;i++){
ans=max(ans,dp[n-1][i]);
}
prf("%d\n",ans);
}
return 0;
} //end-----------------------------------------------------------------------

HDU 3401 Trade dp+单调队列优化的更多相关文章

  1. 【HDU 3401 Trade】 单调队列优化dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3401 题目大意:现在要你去炒股,给你每天的开盘价值,每股买入价值为ap,卖出价值为bp,每天最多买as ...

  2. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  3. 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)

    这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...

  4. Codeforces 1077F2 Pictures with Kittens (hard version)(DP+单调队列优化)

    题目链接:Pictures with Kittens (hard version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:数据量5000, ...

  5. P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)

    题目链接:传送门 题目: 题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( ...

  6. Codeforces 445A Boredom(DP+单调队列优化)

    题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...

  7. bzoj 1855 dp + 单调队列优化

    思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  8. 股票交易(DP+单调队列优化)

    题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...

  9. Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)

    题意: 已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值. 细节: 没有细节???感觉没有??? 分析: 听说有两种方法!!! 好吧实际上是等价的只是看 ...

随机推荐

  1. JavaScript的函数重载

    java语言中函数的重载和重写可谓是很重要的概念,所以在写js的时候时不时的会想到这种用法,重写先不说,这里只说重载.. <script language="JavaScript&qu ...

  2. makefile自动生成目标与依赖的关系

    有main.c: #include <stdio.h> #include "command.h" int main(int argc, const char *argv ...

  3. Oracle PLSQL

    Oracle :show explain plan select * from table(dbms_xplan.display); EXPLAIN PLAN FOR statements In fa ...

  4. SSH 无密码访问其它机器 和 Windows 上 putty 无密码访问 Linux 机器

    1. 从一台 Linux 机器(ubuntu1)上无密码访问其它机器(ubuntu2) (1)登录 ubuntu1 并切换到用户比如 s1 (2)运行 ssh-keygen -t rsa (3)运行c ...

  5. Expect 入门

    一,      Expect的作用 Expect广泛应用于交互式操作和自动化测试的场景之中,用来实现自动和交互式任务进行通信,而无需人的干预. 二,      Ubuntu安装Expect sudo ...

  6. 五个有用的jquery小技巧

    1.禁用鼠标右键 $(document).ready(function() { $(document).bind("contextmenu", function(e) { retu ...

  7. Javascript 中的闭包和引用

    Javascript 中一个最重要的特性就是闭包的使用.因为闭包的使用,当前作用域总可以访问外部的作用域.因为Javascript 没有块级作用域,只有函数作用域,所以闭包的使用与函数是紧密相关的. ...

  8. centos6.5 redis3 开机自动启动命令设置

    修改redis.conf,打开后台运行选项: # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note ...

  9. MySQL数据库学习笔记(九)----JDBC的ResultSet接口(查询操作)、PreparedStatement接口重构增删改查(含SQL注入的解释)

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  10. 分享一个刷网页PV的python小脚本

    下面分享一个小脚本,用来刷网页PV. [root@huanqiu ~]# cat www.py #!/usr/bin/python# coding: UTF-8import webbrowser as ...