UVA1025---A Spy in the Metro(DP)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35913
Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the time
table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
table is not complicated.
Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station, she is
at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
trains as much as possible, even if this means traveling backward and forward. Maria needs to know
a schedule with minimal waiting time at the stations that gets her to the last station in time for her
appointment. You must write a program that finds the total waiting time in a best schedule for Maria.
The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains
move in both directions: from the first station to the last station and from the last station back to the
first station. The time required for a train to travel between two consecutive stations is fixed since all
trains move at the same speed. Trains make a very short stop at each station, which you can ignore
for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the
trains involved stop in that station at the same time.
Input
The input file contains several test cases. Each test case consists of seven lines with information as
follows.
Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.
Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.
Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations, t2
the time between the second and the third station, and so on.
Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
station.
Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
trains depart from the first station.
Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th
station.
Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N-th station.
The last case is followed by a line containing a single zero.
Output
For each test case, print a line containing the case number (starting with 1) and an integer representing
the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
unable to make the appointment. Use the format of the sample output.
Sample Input
4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0
Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible
题意:紫书268页,
看着题解搞了一道wf题,爽!
dp[i][j]表示时刻i,在车站j,等待的最少时间
有3种方案:
等一分钟
往左搭车
往右搭车
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = ;
int t[MAX],n,T,M1,M2,d1[MAX],d2[MAX];
int has_train[MAX][MAX][],dp[MAX][MAX];
//has_train[i][j][0]表示i时刻在j车站往右走的车,has_train[i][j][1]表示往左行的车
int main()
{
int Case = ;
while(scanf("%d", &n) != EOF && n)
{
scanf("%d", &T);
for(int i = ; i < n; i++)
scanf("%d", &t[i]);
scanf("%d", &M1);
for(int i = ; i <= M1; i++)
scanf("%d", &d1[i]);
scanf("%d", &M2);
for(int j = ; j <= M2; j++)
scanf("%d", &d2[j]);
memset(has_train, , sizeof(has_train));
int sum = ;
//对has_train进行预处理
for(int i = ; i <= M1; i++)
{
sum = d1[i];
has_train[ d1[i] ][][] = ;
for(int j = ; j < n; j++)
{
sum += t[j];
has_train[ sum ][j + ][] = ;
}
}
for(int i = ; i <= M2; i++)
{
sum = d2[i];
has_train[ d2[i] ][n][] = ;
for(int j = n - ; j >= ; j--)
{
sum += t[j];
has_train[sum][j][] = ;
}
}
for(int i = ; i <= n-; i++)
dp[T][i] = INF;
dp[T][n] = ;
//这个第一层循环一定是从大往小循环,假设求i时刻j车站最少时间,在这点有三种情况,考虑往左走的车,那么选了往左走的车之后这一点的时间,前提是选了往左走的车辆,时间肯定是在i之后,由选了往左走的车后推出i,j;所以为什么要递减循环
for(int i = T - ; i >= ; i--)
{
for(int j = ; j <= n; j++)
{
dp[i][j] = dp[i + ][j] + ; //等待一分钟
if(j < n && has_train[i][j][] && i + t[j] <= T) //往右走,j必然要小于n,才能走,i+t[j]表示这一点的时间加上到下一点的时间要小于等于T,如果大于T没意义了,因为是T
{ dp[i][j] = min(dp[i][j], dp[ i + t[j] ][ j + ] );
}
if(j > && has_train[i][j][] && i + t[j - ] <= T)
{
dp[i][j] = min(dp[i][j], dp[ i + t[j - ] ][ j - ] );
}
}
}
printf("Case Number %d: ", ++Case);
if(dp[][] >= INF)
printf("impossible\n");
else
printf("%d\n",dp[][]);
} return ;
}
UVA1025---A Spy in the Metro(DP)的更多相关文章
- UVa 1025 A Spy in the Metro (DP动态规划)
题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...
- uva A Spy in the Metro(洛谷 P2583 地铁间谍)
A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especially dangero ...
- UVA1025 A Spy in the Metro —— DP
题目链接: https://vjudge.net/problem/UVA-1025 题解: 详情请看紫书P267. 与其说是DP题,我觉得更像是模拟题,特别是用记忆化搜索写. 递推: #include ...
- UVa 1025 A Spy in the Metro(动态规划)
传送门 Description Secret agent Maria was sent to Algorithms City to carry out an especially dangerous ...
- UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)
传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...
- World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)
分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...
- 【动态规划】[UVA1025]A Spy in the Metro 城市里的间谍
参考:https://blog.csdn.net/NOIAu/article/details/71517440 https://blog.csdn.net/c20180630/article/deta ...
- Uva1025 A Spy in the Metro
#include <iostream> #include <cstring> #include <cstdio> using namespace std; ]; ] ...
- 题解:UVa1025 A Spy in the Metro
原题链接 pdf 题目大意 给出一张无向图图,求该图的最小瓶颈生成树. 无向图的瓶颈生成树:无向图\(G\)的一颗瓶颈生成树是这样的一颗生成树:它最大的边权值在\(G\)的所有生成树中是最小的.瓶颈生 ...
随机推荐
- 16SpringMvc_在业务控制方法中写入User,Admin多个模型收集参数——引出问题
上面文章时普通的业务那个方法中收集一个实体类,这篇文章想收集两个实体类. 文本要做的是:在person.jsp页面上,有两个表单.分别是普通用户和管理员用户的表单(普通用户的表单和管理员用户的表单里面 ...
- JAVA 根据数据库表内容生产树结构JSON数据
1.利用场景 组织机构树,通常会有组织机构表,其中有code(代码),pcode(上级代码),name(组织名称)等字段 2.构造数据(以下数据并不是组织机构数据,而纯属本人胡编乱造的数据) List ...
- R语言利器之ddply和aggregate
ddply和aggregate是两个用来整合数据的功能强大的函数. aggregate(x, ...) 关于aggregate()函数的使用在<R语言实战>中P105有简单描述,这里重新说 ...
- oracle文字与格式字符串不匹配的解决
oracle文字与格式字符串不匹配的解决 oracle的日期时间类型 在往oracle的date类型插入数据的时候,记得要用to_date()方法. 如insert into CUSLOGS(STAR ...
- C#脚本引擎 CS-Script 之(二)——性能评测
以下以一个简单的HelloWord程序为例,来分析csscript脚本引擎的性能. class HelloWorld { public void SayHello() { Console.WriteL ...
- [CareerCup] 7.1 Basketball Shooting Game 投篮游戏
7.1 You have a basketball hoop and someone says that you can play one of two games. Game 1: You get ...
- 如何启动一个已经创建的docker 容器,并进入SHELL 对其操作
腾讯云使用自己的docker镜像安装后无法启动,下边这个亲测是可用的 sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 36A ...
- 傻傻分不清楚的php脚本路径
闲话就不说了,还是直接提出今天的问题,准确的说,对多个相似的 有关当前脚本信息的全局变量常量的区分. 先贴上代码: <?php echo $_SERVER['PHP_SELF']; echo ...
- 关于Chrome的开发15个小技巧
一.快速查找文件 如果你使用过Sublime,那么你会知道’Go to anything’的强大.没错,Chrome现在也有了这一功能. 操作如下: 1.F12打开你的Chrome调试器: 2.按下C ...
- [USACO2005][POJ3169]Layout(差分约束)
题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...