UVA1025---A Spy in the Metro(DP)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35913
Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the time
table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
table is not complicated.
Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station, she is
at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
trains as much as possible, even if this means traveling backward and forward. Maria needs to know
a schedule with minimal waiting time at the stations that gets her to the last station in time for her
appointment. You must write a program that finds the total waiting time in a best schedule for Maria.
The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains
move in both directions: from the first station to the last station and from the last station back to the
first station. The time required for a train to travel between two consecutive stations is fixed since all
trains move at the same speed. Trains make a very short stop at each station, which you can ignore
for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the
trains involved stop in that station at the same time.
Input
The input file contains several test cases. Each test case consists of seven lines with information as
follows.
Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.
Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.
Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations, t2
the time between the second and the third station, and so on.
Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
station.
Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
trains depart from the first station.
Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th
station.
Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N-th station.
The last case is followed by a line containing a single zero.
Output
For each test case, print a line containing the case number (starting with 1) and an integer representing
the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
unable to make the appointment. Use the format of the sample output.
Sample Input
4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0
Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible
题意:紫书268页,
看着题解搞了一道wf题,爽!
dp[i][j]表示时刻i,在车站j,等待的最少时间
有3种方案:
等一分钟
往左搭车
往右搭车
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = ;
int t[MAX],n,T,M1,M2,d1[MAX],d2[MAX];
int has_train[MAX][MAX][],dp[MAX][MAX];
//has_train[i][j][0]表示i时刻在j车站往右走的车,has_train[i][j][1]表示往左行的车
int main()
{
int Case = ;
while(scanf("%d", &n) != EOF && n)
{
scanf("%d", &T);
for(int i = ; i < n; i++)
scanf("%d", &t[i]);
scanf("%d", &M1);
for(int i = ; i <= M1; i++)
scanf("%d", &d1[i]);
scanf("%d", &M2);
for(int j = ; j <= M2; j++)
scanf("%d", &d2[j]);
memset(has_train, , sizeof(has_train));
int sum = ;
//对has_train进行预处理
for(int i = ; i <= M1; i++)
{
sum = d1[i];
has_train[ d1[i] ][][] = ;
for(int j = ; j < n; j++)
{
sum += t[j];
has_train[ sum ][j + ][] = ;
}
}
for(int i = ; i <= M2; i++)
{
sum = d2[i];
has_train[ d2[i] ][n][] = ;
for(int j = n - ; j >= ; j--)
{
sum += t[j];
has_train[sum][j][] = ;
}
}
for(int i = ; i <= n-; i++)
dp[T][i] = INF;
dp[T][n] = ;
//这个第一层循环一定是从大往小循环,假设求i时刻j车站最少时间,在这点有三种情况,考虑往左走的车,那么选了往左走的车之后这一点的时间,前提是选了往左走的车辆,时间肯定是在i之后,由选了往左走的车后推出i,j;所以为什么要递减循环
for(int i = T - ; i >= ; i--)
{
for(int j = ; j <= n; j++)
{
dp[i][j] = dp[i + ][j] + ; //等待一分钟
if(j < n && has_train[i][j][] && i + t[j] <= T) //往右走,j必然要小于n,才能走,i+t[j]表示这一点的时间加上到下一点的时间要小于等于T,如果大于T没意义了,因为是T
{ dp[i][j] = min(dp[i][j], dp[ i + t[j] ][ j + ] );
}
if(j > && has_train[i][j][] && i + t[j - ] <= T)
{
dp[i][j] = min(dp[i][j], dp[ i + t[j - ] ][ j - ] );
}
}
}
printf("Case Number %d: ", ++Case);
if(dp[][] >= INF)
printf("impossible\n");
else
printf("%d\n",dp[][]);
} return ;
}
UVA1025---A Spy in the Metro(DP)的更多相关文章
- UVa 1025 A Spy in the Metro (DP动态规划)
题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...
- uva A Spy in the Metro(洛谷 P2583 地铁间谍)
A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especially dangero ...
- UVA1025 A Spy in the Metro —— DP
题目链接: https://vjudge.net/problem/UVA-1025 题解: 详情请看紫书P267. 与其说是DP题,我觉得更像是模拟题,特别是用记忆化搜索写. 递推: #include ...
- UVa 1025 A Spy in the Metro(动态规划)
传送门 Description Secret agent Maria was sent to Algorithms City to carry out an especially dangerous ...
- UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)
传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...
- World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)
分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...
- 【动态规划】[UVA1025]A Spy in the Metro 城市里的间谍
参考:https://blog.csdn.net/NOIAu/article/details/71517440 https://blog.csdn.net/c20180630/article/deta ...
- Uva1025 A Spy in the Metro
#include <iostream> #include <cstring> #include <cstdio> using namespace std; ]; ] ...
- 题解:UVa1025 A Spy in the Metro
原题链接 pdf 题目大意 给出一张无向图图,求该图的最小瓶颈生成树. 无向图的瓶颈生成树:无向图\(G\)的一颗瓶颈生成树是这样的一颗生成树:它最大的边权值在\(G\)的所有生成树中是最小的.瓶颈生 ...
随机推荐
- linux如何挂载windows下的共享文件
说明:windows下有一共享文件夹APP,windows本地ip是192.168.9.155现在需要在linux服务器上挂载这个APP文件夹,linux服务器ip是192.168.9.200 操作记 ...
- 第二章 下山遇虎(@helper)
@helper方法定义 使用@helper关键字可以定义一个方法,这样就可以在页面中调 用这个方法了,和C#中的方法一样.在页面中定义的方法可以访问ViewBag,HttpContext等等页面的属性 ...
- 如何在 kernel 和 hal 层读取同一个标志
很多时候我们需要从 HAL 层(Hardware Abstract Layer)传一个标志给 kernel 层.一般这种传递是不能直接通过定义全局变量来实现的. 此时可以通过读写文件来实现该标志. 譬 ...
- Visual C#编写3D游戏框架示例
你可能对实际地编写游戏代码期待已久了.由于DirectX SDK 2004年夏季更新包含了一个牢固的示例框架组件,并且它被设计成能在你自己的代码中直接使用,同时还为你处理了很多事务,所以你只要简单的使 ...
- MySQL基础 - mysql命令行客户端
在Linux系统当中,mysql作为一个客户端命令程序,在很大程度上连接数据库都是使用mysql,因此很有必要熟悉mysql命令行的使用. 这里假设数据库用户为icebug,密码为icebug_pas ...
- Linux查看系统资源命令
转载于:http://lxbins.blog.51cto.com/1089997/283663 top:======================================主要参数d:指定更新 ...
- NET中MSMQ的使用----附例子
目录 一:MSMQ的一些理论上的知识 二:队列类型(Queue Type) 三:安装消息队列 四:在C#中Messagequeue class 五:MSMQ-发送消息到远程专用队列 六:例子 一. ...
- Hello,cnblog‘s world!
纠结了许久,终于选在这个地方安家.之所以选在这里,是因为这里是个很干净的社区. 之前一直在其他博文网站里发文章,可是越到后来,发现页面广告越来越多.真正对自己有价值的内容越来越少,虽然已经使用过几年了 ...
- Opencv step by step - 图像融合
两个图像的融合就是像素的融合了,其实手动操作即可,用函数操作更方便了. 下面代码的作用是融合阿狸和doctor,很和谐有木有! #include <cv.h> #include <h ...
- python实现简易数据库之一——存储和索引建立
最近没事做了一个数据库project,要求实现一个简单的数据库,能满足几个特定的查询,这里主要介绍一下我们的实现过程,代码放在过ithub,可参看这里.都说python的运行速度很慢,但因为时间比较急 ...