求拓扑排序的数量,例题 topcoder srm 654 div2 500
周赛时遇到的一道比较有意思的题目:
Problem Statement |
|||||||||||||
There are N rooms in Maki's new house. The rooms are numbered from 0 to N-1. Some pairs of rooms are connected by bidirectional passages. The passages have the topology of a tree. That is, there are exactly N-1 of them and it is possible to go from any room to any other room by following some sequence of passages. You are given two vector <int>s a and b that describe the passages. For each valid i, there is a passage that connects the rooms a[i] and b[i]. You are also given an int s. The house has exactly one entrance from the outside, and the entrance leads to the room s. Niko is helping Maki move into the new house. Maki has exactly N pieces of furniture. The pieces are numbered from 0 to N-1. Niko will carry them into the house in this order. Each piece of furniture must be placed into a different room. Maki does not care which piece goes where, each of the N! permutations is allowed. However, not all of those N! permutations are actually possible. This is because the furniture is large. As soon as a room contains a piece of furniture, it is impossible to move other pieces through this room. Thus, Niko must place the furniture carefully. Formally, she can place a new piece of furniture into the room x if and only if all rooms on the (unique) path between s and x, including s and x, are still empty. Niko is smart and she will always place the furniture in such a way that she never gets stuck. Thus, at the end each of Maki's rooms will contain exactly one piece of furniture. Calculate and return the number of ways how the furniture can be arranged in Maki's house at the end. |
|||||||||||||
Definition |
|||||||||||||
|
|||||||||||||
Limits |
|||||||||||||
|
|||||||||||||
Constraints |
|||||||||||||
- | N will be between 1 and 9, inclusive. | ||||||||||||
- | a and b will contain exactly N-1 elements each. | ||||||||||||
- | Each element of a and b will be between 0 and N-1, inclusive. | ||||||||||||
- | The graph described by a and b will be a tree. | ||||||||||||
- | s will be between 0 and N-1, inclusive. | ||||||||||||
Examples |
|||||||||||||
0) | |||||||||||||
|
|||||||||||||
1) | |||||||||||||
|
|||||||||||||
2) | |||||||||||||
|
|||||||||||||
3) | |||||||||||||
|
|||||||||||||
4) | |||||||||||||
|
This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
这道题目也等同于:
假设一个Tree含有N个结点,现在有N个数字 1-N,将这个Tree的N个结点用这N个数字编号,要求父结点一定要大于子结点的编号,一共有多少种编号方式。
这种题目都可以抽象为一个问题:求一个Tree 所有结点的拓扑序列的个数。
求解方式可以用DFS来做:
另int Func() 表示当前Tree 的拓扑排序数量,Func() 可以这么计算:找到当前Tree中所有入度为0的结点,假设有K个这样的结点,对于每个这样的结点,从Tree去掉从该结点出发的边,然后算出去掉边后的Tree 对应的Func()。子Func()的结果的总和,就是 父Func()的结果。
当所有结点都遍历过时,Func() 返回 1
题目中的图表示是用两个vector 表示,所以要先根据这两个vector 构建出单向邻接矩阵 conn[][]
#include<iostream>
#include<vector>
#include<string.h>
using namespace std; class OneEntrance{
public:
int count(vector <int> a, vector <int> b, int s){
N = a.size() + ;
if(N <= ) return N;
memset(conn, , sizeof(conn));
memset(visit, , sizeof(visit));
dfsconn(a, b, s, -); //use a, b to create adjacency matrix(mono-directed)
return dfscount(conn); //based on matrix, get the total amount of topological sequence.
}
private:
bool conn[][];
bool visit[];
int N = ;
void dfsconn(vector<int> &a, vector<int> &b, int cur, int pre){
for(int i = ; i < a.size(); ++i){
if(a[i] == cur && b[i] != pre){
conn[a[i]][b[i]] = true;
dfsconn(a, b, b[i], cur);
}
if(b[i] == cur && a[i] != pre){
conn[b[i]][a[i]] = true;
dfsconn(a, b, a[i], cur);
}
}
}
int dfscount(bool conn[][]){
int i, j, zdgrcnt, cnt = ;
for(i = ; i < N; ++i) cnt += (!visit[i] ? : );
if(cnt == ) return ;
cnt = ;
for(i = ; i < N; ++i){
if(visit[i]) continue;
zdgrcnt = ;
for(j = ; j < N; ++j){
zdgrcnt += (conn[j][i] ? : );
}
if(zdgrcnt == ){ //found one node whose in-order degree is zero
visit[i] = true;
vector<bool> tmp(N, false);
for(j = ; j < N; ++j){
if(conn[i][j]){
tmp[j] = true;
conn[i][j] = false; //remove its out-order edge.
}
}
cnt += dfscount(conn);
for(j = ; j < N; ++j){
if(tmp[j]) conn[i][j] = true;
}
visit[i] = false;
}
}
return cnt;
}
};
dfs 中包含了很多重复计算,毕竟是递归。
动态规划的解法可以参考对 HDU 4661 这一题的解答
传送门: http://www.cnblogs.com/GBRgbr/p/3312866.html
求拓扑排序的数量,例题 topcoder srm 654 div2 500的更多相关文章
- Topcoder SRM 619 DIv2 500 --又是耻辱的一题
这题明明是一个简单的类似约瑟夫环的问题,但是由于细节问题迟迟不能得到正确结果,结果比赛完几分钟才改对..耻辱. 代码: #include <iostream> #include <c ...
- hdu1532 用BFS求拓扑排序
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1285 题目给出一些点对之间的先后顺序,要求给出一个字典序最小的拓扑排列.对于拓扑排序的问题,我们有DF ...
- Topcoder Srm 673 Div2 1000 BearPermutations2
\(>Topcoder \space Srm \space 673 \space Div2 \space 1000 \space BearPermutations2<\) 题目大意 : 对 ...
- Topcoder Srm 671 Div2 1000 BearDestroysDiv2
\(>Topcoder \space Srm \space 671 \space Div2 \space 1000 \space BearDestroysDiv2<\) 题目大意 : 有一 ...
- TopCoder SRM 701 Div2 Problem 900 ThueMorseGame(博弈+预处理)
题意 Alice和Bob在玩一个游戏,Alice先手. 每次一个人可以从一堆式子中拿走任意数量(不超过m)的式子. 取走最后一颗式子的人胜利. 当一个取完某一步的时候剩下的石子数量的二进制表示中1的 ...
- Topcoder SRM 626 DIV2 SumOfPower
本题就是求所有连续子数列的和 开始拿到题目还以为求的时数列子集的和,认真看到题目才知道是连续子数列 循环遍历即可 int findSum(vector <int> array) { ; ; ...
- Topcoder SRM 626 DIV2 FixedDiceGameDiv2
典型的条件概率题目. 事件A在另外一个事件B已经发生条件下的发生概率.条件概率表示为P(A|B),读作“在B条件下A的概率”. 若只有两个事件A,B,那么, P(A|B)=P(AB)/P(B) 本题的 ...
- topcoder SRM 610 DIV2 TheMatrix
题目的意思是给一个01的字符串数组,让你去求解满足棋盘条件的最大棋盘 棋盘的条件是: 相邻元素的值不能相同 此题有点像求全1的最大子矩阵,当时求全1的最大子矩阵是用直方图求解的 本题可以利用直方图求解 ...
- topcoder SRM 624 DIV2 CostOfDancing
排个序,求前k个元素和即可 int minimum(int K, vector <int> danceCost) { sort(danceCost.begin(),danceCost.en ...
随机推荐
- ruby正则匹配回车换行符
如果你使用/^.*$/这种正则是匹配不到回车换行符的. 所以应该像下面这么写: /^[\s\S]*$/
- paip.Java Annotation注解的作用and 使用
paip.Java Annotation注解的作用and 使用 作者Attilax 艾龙, EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog. ...
- HDU 1711 Number Sequence (KMP)
白书说这个是MP,没有对f 数组优化过,所以说KMP有点不准确 #include <stdio.h> int a,b; int T[1000010],P[10010];//从0开始存 in ...
- I2S (Inter—IC Sound) 总线
I2S I2S(Inter—IC Sound)总线, 又称 集成电路内置音频总线,是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准,该总线专责于音频设备之间的数据传输,广泛应用于各种多 ...
- AngularJS和DataModel
通常,在AngularJS中使用JSON作为存储数据的模型.我们可能这样在controller中写model: app.controller('BookController',['$scope',fu ...
- how to read from __consumer_offsets topic
来自:http://grokbase.com/t/kafka/users/15bs2r0m83/kafka-0-8-2-1-how-to-read-from-consumer-offsets-topi ...
- WPF与winform与silverlight的区别
收到了一封学生的邮件: =========================== 金老师您好: 最近在学C#.NET,基本语法学习的差不多了,接下来准备学习图形界面设计部分.但是我目前对于.NET的Wi ...
- windbg----as、$u0(固定别名、自定义别名)
固定别名($u0~$u9) 有10个固定别名.他们是$u0, $u1, ..., $u9.他们的等价字符串可以是不包含ENTER键的任意字符串.使用r (Registers)命令为固定别明指定等价字符 ...
- 在redis一致性hash(shard)中使用lua脚本的坑
redis 2.8之前的版本,为了实现支持巨量数据缓存或者持久化,一般需要通过redis sharding模式来实现redis集群,普遍大家使用的是twitter开源的Twemproxy. twemp ...
- IIS网站属性中没有ASP.NET选项
打开IIS6,右击属性,居然没有发现ASP.NET的配置选项,虽然好久没搞这个了,但是印象中绝对是有一个ASP.NET选项卡的.我很奇怪,我以为是.net framework 2.0没安装,下载下来安 ...