看了题解,自己大概想了下。

最小割唯一的充分必要条件是残量网络中所有点要嘛能从源点floodfill到要嘛能floodfill到汇点。

必要性,这是当然的,因为假设从源点floodfill或者从汇点反着floodfill得到的集合若不相补,那这就有两个最小割的方案,最小割不唯一。

充分性,首先这样就找到一个最小割,它在两次floodfill的交界处,假设还存在另一个最小割在靠近源点或者靠近汇点处那必然floodfill时找到的是它,这与另一个最小割矛盾,所以仅存在这么一个在交界处的最小割。

于是我就胡乱证明完毕了。。。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 888
#define MAXM 40000 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int cnt1,cnt2;
bool vis1[MAXN],vis2[MAXN];
void dfs1(int u){
++cnt1;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis1[v] || edge[i].cap==edge[i].flow) continue;
vis1[v]=;
dfs1(v);
}
}
void dfs2(int u){
++cnt2;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis2[v] || edge[i^].cap==edge[i^].flow) continue;
vis2[v]=;
dfs2(v);
}
}
int main(){
int m,a,b,c;
while(~scanf("%d%d%d%d",&NV,&m,&vs,&vt)&&(NV||m||vs||vt)){
NE=;
memset(head,-,sizeof(head));
while(m--){
scanf("%d%d%d",&a,&b,&c);
if(a==b) continue;
addEdge(a,b,c);
addEdge(b,a,c);
}
ISAP(); cnt1=cnt2=;
memset(vis1,,sizeof(vis1));
memset(vis2,,sizeof(vis2));
vis1[vs]=; vis2[vt]=;
dfs1(vs); dfs2(vt); if(cnt1+cnt2==NV) puts("UNIQUE");
else puts("AMBIGUOUS");
}
return ;
}

ZOJ2587 Unique Attack(判定最小割唯一性)的更多相关文章

  1. ZOJ 2587 Unique Attack(最小割唯一性判断)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2587 题意:判断最小割是否唯一. 思路: 最小割唯一性的判断是先跑一遍最大 ...

  2. ZOJ - 2587 Unique Attack (判断最小割是否唯一)

    题意:判断最小割是否唯一. 分析:跑出最大流后,在残余网上从源点和汇点分别dfs一次,对访问的点都打上标记. 若还有点没有被访问到,说明最小割不唯一. https://www.cnblogs.com/ ...

  3. zoj 2587 Unique Attack【最小割】

    拆点拆魔怔了 直接按照原图建就行,这里有个小技巧就是双向边的话不用按着板子建(u,v,c)(v,u,0)(v,u,c)(u,v,0),直接建(u,v,c)(v,u,c)会快十倍!800ms->8 ...

  4. ZOJ 2587 Unique Attack (最小割唯一性)

    题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...

  5. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

  6. [ZOJ2587]Unique Attack

    vjudge sol 最小割判定唯一性. 只要做完一个任意最小割后,判断一下是不是所有点都要么和\(S\)相连,要么和\(T\)相连. 只要两边各一次\(dfs\)就行了. code #include ...

  7. ZOJ2930 The Worst Schedule(最小割)

    题目大概说有n个任务,每个任务可以提前或推迟,提前或推迟各有一定的费用,有的任务一旦推迟另一个任务也必须推迟,问怎么安排任务使花费最少,且最少花费的条件下提前的任务数最多能多少. 问题就是要把各个任务 ...

  8. BZOJ 1797 最小割(最小割割边唯一性判定)

    问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题. 最小割唯一性判定 jcvb: 在残余网络上跑ta ...

  9. zoj 2587 Unique Attack 最小割判定

    题目链接 让你判断最小割是否唯一. 判断方法是, 先求一遍最大流, 然后从源点dfs一次, 搜索未饱和边的数目. 从汇点dfs一次, 同样也是搜索未饱和边的数目, 看总和是否等于n. 如果等于n那么唯 ...

随机推荐

  1. iPhone取消软件更新上边的1

    去除设置的更新+1小红点提示主要分为越狱和非越狱设备两种方法. 越狱状态下方法: 首先将你的设备进行越狱: 越狱后安装ifile(这个自行搜索安装): 用ifile打开/System/Library/ ...

  2. linux 下如何查看和踢除正在登陆的其它用户 ==>Linux下用于查看系统当前登录用户信息的4种方法

    在linux系统中用pkill命令踢出在线登录用户 由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍 所以需要有时踢出指定的用户 1/#who   查出当前有那些终端登录(用 ...

  3. Java锁之自旋锁详解

    锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) .这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类 ...

  4. 解决虚拟机 正在决定eht0 的ip信息失败 无链接-- 添加虚拟网卡

    添加步骤:1.进入设备管理器 2.点下一步3.继续下一步 4.继续往下走

  5. 13.python笔记之pyyaml模块

    Date:2016-03-25 Title:13.Python笔记之Pyymal模块使用 Tags:Python Category:Python 博客地址:www.liuyao.me 作者:刘耀 YA ...

  6. codeforces C. Fixing Typos 解题报告

    题目链接:http://codeforces.com/problemset/problem/363/C 题目意思:纠正两种类型的typos.第一种为同一个字母连续出现3次以上(包括3次):另一种为两个 ...

  7. codeforces B. Permutation 解题报告

    题目链接:http://codeforces.com/problemset/problem/359/B 题目意思:给定n和k的值,需要构造一条长度为2n(每个元素取值范围只能是[1,2n])且元素各不 ...

  8. jquery给height拼接动态变量

    var sizeLength = "${list.size()}"; if(sizeLength==''){ sizeLength=0; } sizeLength=400*size ...

  9. popular net

    陈皓<跟我一起写makefile>http://blog.csdn.net/haoel/article/details/2886/

  10. context switches per second 上下文切换

    上下文切换对系统来说意味着消耗大量的CPU时间.上下文切换只发生在内核态中.内核态是CPU的一种有特权的模式,在这种模式下只有内核运行并且可以访问所有内存和其它系统资源.