题目大概说有n个人每个人各有一个信仰0或1,他们中有m对朋友关系,现在要对一件事投票,可以为了和信仰不同的朋友一样而违背自己的信仰和朋友投一样的票,问违背信仰的人数加上和朋友投票结果不同的人数总和的最小值。

这相当于每个人要嘛分到0集合要嘛分到1集合,分到不同集合都会有0或1的花费,而朋友关系中就是两个人如果分到的集合不同那就会产生1的花费,如何分配使总花费最少。

经典的最小割模型,源点向信仰1的人连容量1的边,信仰0的人向汇点连容量1的边,朋友间互相连容量1的边。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 333
#define MAXM 333*666 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
int main(){
int n,m,a,b;
while(~scanf("%d%d",&n,&m) && (n||m)){
vs=; vt=n+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
scanf("%d",&a);
if(a) addEdge(vs,i,);
else addEdge(i,vt,);
}
while(m--){
scanf("%d%d",&a,&b);
addEdge(a,b,);
addEdge(b,a,);
}
printf("%d\n",ISAP());
}
return ;
}

HDU3138 Coconuts(最小割)的更多相关文章

  1. spoj 1693 COCONUTS - Coconuts【最小割】

    s向所有信仰1的人连(s,i,1),所有信仰0的人连(i,t,1),对于朋友关系,连接双向边,流量为1.跑最大流的结果即为答案. 考虑这样做的意义.最小割就是把总点集分割为两个点集S,T,使得所有\( ...

  2. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  3. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  4. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  5. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  6. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  7. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  8. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  9. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

随机推荐

  1. Python 常用函数大体分类

    ==================系统库函数================ 字符串函数 举例数学函数 import math val=math.sin(3.14/6) val=math.sin(m ...

  2. 给定一个值S,在有序数组中找出两个元素A和B,使 A+B = S.

    在网上看到过一个面试题,感觉挺有意思,看别人的代码写的逻辑不够谨慎,重写了一个,较真了又... package com.array7.algorithm; public class Algorithm ...

  3. 最短路&&最小生成树水题

    训练赛20151122 5:00:00     Overview Problem Status Rank Discuss Current Time: 2015-11-23 17:33:18 Conte ...

  4. python操作Excel读写--使用xlrd

    一.安装xlrd模块 到python官网下载http://pypi.python.org/pypi/xlrd模块安装,前提是已经安装了python 环境. 二.使用介绍 1.导入模块 import x ...

  5. 转数据库分库分表(sharding)系列(二) 全局主键生成策略

    本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表( ...

  6. canvas API ,通俗的canvas基础知识(五)

    前几期讲的都是路径图形的绘图,这节我们要讲的是如何在画布上操作图片,因为图形画不了漂亮妹子(画图高手忽略不计),想画美女怎么办?跟我来: 想要在画布中插入一张图片,我们需要的方法是这位大侠: draw ...

  7. linux下重启tomcat、实时查看tomcat运行日志

    在Linux系统下,重启Tomcat使用命令操作的! 首先,进入Tomcat下的bin目录 cd /usr/local/tomcat/bin 使用Tomcat关闭命令 ./shutdown.sh 查看 ...

  8. 扩展HtmlHelper方法

    1.在Model中新建类MyHtmlHelperExt /// <summary> /// 扩展HtmlHelper方法 /// 扩展方法三要素:静态类,静态方法,this关键字 /// ...

  9. mongoDb学习以及spring管理

    1.windows下的安装http://www.cnblogs.com/liuzhiying/p/5915741.html 2.慕课网学习单机操作mongoDb 赋权限:http://blog.csd ...

  10. Maven使用笔记(一)Maven安装及常用命令

    1.Windows下安装Maven 首先去下载Maven安装包,http://maven.apache.org/download.cgi,目前最新版本是 Maven 3.2.3 . 解压到本地,可以看 ...