死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的。。。

3287 货车运输 2013年NOIP全国联赛提高组

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 钻石 Diamond

题解

查看运行结果

题目描述 Description

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入描述 Input Description

第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。

接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。

输出描述 Output Description

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。

样例输入 Sample Input

4 3

1 2 4

2 3 3

3 1 1

3

1 3

1 4

1 3

样例输出 Sample Output

3

-1

3

数据范围及提示 Data Size & Hint

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000;

对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000;

对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000,0 ≤ z ≤ 100,000。

开始用并查集和kruskal编了个最大生成树,具体操作和原版相似度99%。。然后用树上倍增求LCA来优化两点之间的查找,开一个新的数组c【i】【j】记录从节点i跳2^j个点路径上的最小的路径权值(此题反应为路径承受重量的限度)@SLYZLZR感谢调试时的帮助orz

—————————–分割线——————————-

代码:

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;
struct data{
int start,end,weight;
};
data road[60000]={0};
int n,m,q;
int i,j;
int num=0;//最大生成树边数
int father[50000]={0};
vector <int> g[100010];
vector <int> qz[100010];
int f[50010][40]={0};
int c[50010][40]={0};
int depth[100010]={0};
bool visit[10010]={false}; int find(int x)
{
if (father[x]==x)
return x;
father[x]=find(father[x]);
return father[x];
}//并查集查找代表元素 void merge(int x,int y,int k)
{
int f1=find(x);
int f2=find(y);
if (f1!=f2)
{
father[f1]=f2;
num++;
g[x].push_back(y);
g[y].push_back(x);
qz[x].push_back(road[k].weight);
qz[y].push_back(road[k].weight);
//f[y][0]=x;
}
}//并查集合并(上述多加的操作因为是无向图,在此处无法得知谁是谁的父亲,故要两次赋值,为接下来dfs建树做基础) void chushi()
{
for (int i=1; i<=n; i++)
father[i]=i;
}//并查集初始化 int cmp(data x,data y)
{
if (x.weight>y.weight)
return 1;
return 0;
}//结构体排序cmp函数 void dfs(int u)
{
int i;
visit[u]=true;
for (i=0; i<g[u].size(); i++)
{
int v=g[u][i];
if (!visit[v])
{
depth[v]=depth[u]+1;
c[v][0]=qz[u][i];//处理权值的问题
f[v][0]=u;
dfs(v);
}
}
}//dfs建树求出每个节点的深度(算是lca的预处理吧) void bz()
{
int i,j;
for (j=1;j<=30;j++)
for (i=1;i<=n;i++)
if (f[f[i][j-1]][j-1]!=0)
{
f[i][j]=f[f[i][j-1]][j-1];
c[i][j]=min(c[i][j-1],c[f[i][j-1]][j-1]);
}
}//倍增求出f【i】【j】和c【i】【j】 int LCA(int a,int b)
{
int i,u=a,v=b;
if (depth[u]<depth[v])
{
i=u;
u=v;
v=i;
}
int dc=depth[u]-depth[v];
int ans=1000000000;
for (i=0; i<30; i++)
{
if ((1<<i)&dc)
{
ans=min(ans,c[u][i]);
u=f[u][i];
}
}
if (u==v) return ans;
for (i=29; i>=0; i--)
{
if (f[u][i]!=f[v][i])
{
ans=min(min(ans,c[u][i]),c[v][i]);
u=f[u][i];
v=f[v][i];
}
}
ans=min(min(ans,c[u][0]),c[v][0]);
//u=f[u][0];
return ans;
} //lca不过不同于平常的是此处返回的值是答案 int main()
{
scanf("%d%d",&n,&m);
chushi();
for (i=0; i<=n; i++)
g[i].clear();
for (i=1; i<=m; i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
road[i].start=x;
road[i].end=y;
road[i].weight=z;
}
sort(road+1,road+m+1,cmp);
for (i=1; i<=m; i++)
{
if (num==n-1)
break;
merge(road[i].start,road[i].end,i);
}//kruskal最大生成树
depth[1]=1;
dfs(1);
bz();
scanf("%d",&q);
for (i=1; i<=q; i++)
{
int now,to;
scanf("%d%d",&now,&to);
if (find(now)!=find(to))
{
printf("-1\n");
continue;
}//如果两点不能到达直接输出-1(用并查集处理即可)
else
printf("%d\n",LCA(now,to));
}
return 0;
}



累死了,晚上又要和QDEZ打模拟赛,感觉要炸。。。

NOIP2013 货车运输 (最大生成树+树上倍增LCA)的更多相关文章

  1. Luogu1967 NOIP2013 货车运输 最大生成树、倍增

    传送门 题意:给出一个$N$个节点.$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值.$N \leq 10000 , M \leq 50000 , Q ...

  2. 【NOIP2013/Codevs3287】货车运输-最小生成树(大)-树上倍增

    https://www.luogu.org/problemnew/show/P1967 由题可知,我们走的路的边应尽可能大,所以通过kruscal建最大生成树的图,再树上倍增,注意可能有多棵树; #i ...

  3. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

  4. [Luogu 1967] NOIP2013 货车运输

    [Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...

  5. 【bzoj4281】[ONTAK2015]Związek Harcerstwa Bajtockiego 树上倍增+LCA

    题目描述 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点.之后你将依次收到k个指令,每个指令包含两个整数d和t,你需要沿着最短路在t步之内(包含t步)走到d点,如果不能走到,则停在 ...

  6. [NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增

    Problem 树上倍增 题目大意 给出一个图,给出若干个点对u,v,求u,v的一条路径,该路径上最小的边权值最大. Solution 看到这个题第一反应是图论.. 然而,任意路径最小的边权值最大,如 ...

  7. $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$

    $Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...

  8. TZOJ 4848 货车运输(最大生成树+倍增lca)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  9. NOIp2013 货车运输 By cellur925

    题目传送门 A 国有 n 座城市,编号从 1 到 n ,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重. 现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下 ...

随机推荐

  1. Android学习----自适应国际化语言

    [前言] 自适应的知识与编程无关,关键在于配置文件的修改.自适应的内容包括:语言.屏幕.平台.今天就来说一下如何自适应国际化言. internationalization (国际化)简称:i18n,因 ...

  2. Unity3d+Jenkins 自动编译iOS、Android版本

    1.在Unity3d中, 创建导出 iOS.Android 项目脚本 PerformBuild.cs ,放在Editor目录下(必须),如下: using UnityEditor; using Sys ...

  3. 如何查看windows xp系统的位数?

    1.右击“我的电脑”->属性,可以看到.2.运行dxdiag,在操作系统一行可以看到.3.运行cmd,输入systeminfo,在系统类型一栏可以看到.--简单4.使用一些检测软件也可以看,像鲁 ...

  4. HTTP请求与响应方式

    HTTP请求格式 当浏览器向Web服务器发出请求时,它向服务器传递了一个数据块,也就是请求信息,HTTP请求信息由3部分组成: l   请求方法URI协议/版本 l   请求头(Request Hea ...

  5. [WPF]资源字典——程序集之间的资源共享 简单换皮肤

    直接上代码,已便已后自己查况阅,新手也可以看! 1.新建一个资料类和一个WPF工程 2.APP.XAML应该资源字典,注意应Source格式,前面一定要有“/” <ResourceDiction ...

  6. 哎呀,发现自己不会用模块的方式用kprobe啊,弱爆了

    在内核外面编译模块,会报warning函数名undefined的错误,解决方法是把函数给export出来:EXPORT_SYMBOL 一直以来,用kprobe比较多的是kprobe event的用法, ...

  7. android studio使用说明

    一.学习的基本配置文档,搞好各种参数的基本配置,熟练使用. C:\Program Files\Java\jdk1.7.0_09\bin   二.problems meet in weather and ...

  8. 一份高级Java招聘要求

    搜了一些招聘,发现自己还有很长的路要走啊,学无止境...... 摘一个典型的招聘要求,如下: 1.5年基于java的项目开发经验,2.熟悉基于 J2EE的相关开源技术以及Spring,Struts2, ...

  9. Java6 String.substring()方法的内存泄露

    substring(start,end)在Java编程里面经常使用,没想到如果使用不当,会出现内存泄露. 要了解substring(),最好的方法便是查看源码(jdk6): /** * <blo ...

  10. [CareerCup] 4.9 All Paths Sum 所有路径和

    4.9 You are given a binary tree in which each node contains a value. Design an algorithm to print al ...