地理围栏算法解析(Geo-fencing)
地理围栏算法解析
http://www.cnblogs.com/LBSer/p/4471742.html
地理围栏(Geo-fencing)是LBS的一种应用,就是用一个虚拟的栅栏围出一个虚拟地理边界,当手机进入、离开某个特定地理区域,或在该区域内活动时,手机可以接收自动通知和警告。如下图所示,假设地图上有三个商场,当用户进入某个商场的时候,手机自动收到相应商场发送的优惠券push消息。地理围栏应用非常广泛,当今移动互联网主要app如美团、大众点评、手淘等都可看到其应用身影。
图1 地理围栏示意图
地理围栏的核心问题就是判断用户是否落在某多边形围栏内部。本文将介绍实际应用中常用的解决方法。
1 如何判断点在多边形内部
地理围栏一般是多边形,如何判断点在多边形内部呢?可以通过射线法来判断点是否在多边形内部。如下图所示,从该点出发沿着X轴画一条射线,依次判断该射线与每条边的交点,并统计交点个数,如果交点数为奇数,则在多边形内部(如图3个交点),如果焦点数是偶数,则在外部,射线法对凸和非凸多边形都适用,复杂度为O(N),其它N是边数。源码可参考(http://alienryderflex.com/polygon/)
图2 射线法判断点在多边形内外
当地理围栏多边形数目较少时,我们可以依次遍历每一个多边形(暴力遍历法),然后用射线法进行判断,这样效率也很高。而当多边形数目较多时,比如有10万个多边形,这个时候需要执行10万次射线法,响应时间达到3.9秒,这在互联网应用几乎不可忍受。下表是本人的简单测试,多边形边数均为7。
表1 射线法性能测试
2 R树索引加速判断
暴力遍历法效率低下的原因是与每一个多边形都进行了射线法判断,如果能减少射线法的调用次数性能就能提升。因此我们的优化思路很直接,首先通过粗筛的方法快速找到符合条件的少量多边形,然后对粗筛后的多边形使用射线法判断,这样射线法的执行次数大大降低,效率也能大大提高。怎么粗筛呢?对于一维数据我们常常使用索引的方法,比如通过B树索引找到某一个范围区间段,然后对此范围区间段进行遍历查找,对于二维空间数据常常使用空间索引的方法,比如通过R树找到范围区间内的多边形,然后对此范围内的多边形进行精确判断,下面介绍最常使用的空间索引R树的解决思路。
1)外包矩形表示多边形
由于多边形形状各异,我们需要以一种统一的方式来对多边形进行近似,最简单的方式就是用最小外包矩形来表示多边形。
图3 最小外包矩形(MBR)表达多边形
2)对最小外包矩形建立R树索引
图4 对最小外包矩形进行R树索引
3)查询
a)首先通过R树迅速判断用户所在位置(粗红点)是否被外包矩形覆盖(图5,红色点代表用户所在位置;R树平均查询复杂度为O(Log(N)),N为多边形个数);
b)如果不被任何外包矩形覆盖则返回不在地理围栏多边形内;
c)如果被外包矩形覆盖则还需要进一步判断是否在此外包矩形的多边形内部,采用上文提到的射线法判断(图2)。
图5 R树查询示例
3 多边形边数较多怎么办
大多数应用的地理围栏多边形都比较简单,但有时也会遇到一些特别复杂的多边形,比如单个多边形的边数就超过十几万条,这时候对此复杂多边形执行一次射线法也非常耗时(因为射线法时间复杂度为O(N),N为多边形边数)。
如何提高对复杂多边形执行射线法的计算效率呢?同样使用R树索引!笔者在实际应用中对边数较多(如超过1万)的多边形的边再单独进行R树索引,具体如图6所示,首先对多边形的每条边构建最小外包矩形,然后在这些最小外包矩形基础上构建R树索引(R树索引上的外包矩形未画出),这样射线法求交点的时候首先通过R树判断射线是否与外包矩形相交,最后对R树粗筛后的边进行精确求交判断,时间复杂度从O(N)降到O(Log(N)),大大提高了计算效率。
图6 对多边形的边进行R树索引
4 实践
某线上应用服务有30万个地理围栏多边形,通过在内存中构建R树索引,使得线上实时地理围栏查询平均响应时间在1ms以内,而暴力查询响应时间是9秒左右。
5 R树相关源码
https://pypi.python.org/pypi/Rtree/ (Python)
http://jsi.sourceforge.net/ (Java)
https://github.com/leaflet-extras/RTree (Javascript)
http://sourceforge.net/p/cspatialindexrt/code/HEAD/tree/ (C#)
空间索引相关博文:
地理围栏算法解析(Geo-fencing)的更多相关文章
- 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(3)-前端实现
转载自:http://www.cnblogs.com/Auyuer/p/8086975.html MoonLight可视化订单需求区域分析系统实现功能: 在现实生活中,计算机和互联网迅速发展,人们越来 ...
- 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(1)
本文描述了一个系统,功能是评价和抽象地理围栏(Geo-fencing),以及监控和分析核心地理围栏中业务的表现. 技术栈:Spring-JQuery-百度地图WEB SDK 存储:Hive-Elast ...
- 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(2)-查询实现
在上一篇博客中,我们准备好了数据.现在数据已经以我们需要的格式,存放在Elasticsearch中了. 本文讲述如何在Elasticsearch中进行空间GEO查询和聚合查询,以及如何准备ajax接口 ...
- Python一行代码处理地理围栏
最近在工作中遇到了这个一个需求,用户设定地理围栏,后台获取到实时位置信息后通过与围栏比较,判断是否越界等. 这个过程需要用到数据协议为GEOjson,通过查阅资料后,发现python的shapely库 ...
- TableStore最佳实践:轻松实现轨迹管理与地理围栏
摘要: 基于TableStore轻松实现亿量级轨迹管理与地理围栏 一.方案背景 轨迹管理系统日常生活中使用非常普遍,如外卖派送轨迹.快递物流流转.车辆定位轨迹等.该场景与地理位置管理类似,核心点与瓶颈 ...
- KMP串匹配算法解析与优化
朴素串匹配算法说明 串匹配算法最常用的情形是从一篇文档中查找指定文本.需要查找的文本叫做模式串,需要从中查找模式串的串暂且叫做查找串吧. 为了更好理解KMP算法,我们先这样看待一下朴素匹配算法吧.朴素 ...
- Peterson算法与Dekker算法解析
进来Bear正在学习巩固并行的基础知识,所以写下这篇基础的有关并行算法的文章. 在讲述两个算法之前,需要明确一些概念性的问题, Race Condition(竞争条件),Situations lik ...
- iOS地理围栏技术的应用
遇到一个需求,要求监测若干区域,设备进入这些区域则要上传数据,且可以后台监测,甚至app被杀死也要监测.发现oc的地理围栏技术完美匹配这个需求,任务做完了,把遇到的坑记录下来,也许能帮到你呢. 要做这 ...
- 【Android Developers Training】 106. 创建并检测地理围栏
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
随机推荐
- rotate the clock
A program test: You are given N round clocks. Every clock has M hands, and these hands can point to ...
- js读取解析JSON数据
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意 ...
- Apache Spark-1.0.1集群搭建
欢迎经验交流!本文Blog地址:http://www.cnblogs.com/fesh/p/3866791.html Apache Spark a fast and general engine ...
- stm32串口之存储与解析
最近在做一个小项目,需要用stm32串口接受Arduino发送的一个不定长的数据,并且解析数据,执行其中的命令:秉着不在中断中做过多任务的思想,我们将从串口中接受到的字符放到一个数组当中. 定义数组 ...
- Tara's Beautiful Permutations 组合数学
https://www.hackerrank.com/contests/hourrank-15/challenges/taras-beautiful-permutations 首先先统计一下个数为2的 ...
- Codeforces Round #383 _python作死系列
A. Arpa's hard exam and Mehrdad's naive cheat 题意求1378的n次方的最后一位,懒的写循环节 瞎快速幂 py3 int和LL 合并为int了 def q_ ...
- 在Spring项目中使用Log4j记录日志
(1)引入log4j的jar包: 官网下载地址:http://logging.apache.org/log4j/1.2/download.html (2)在web.xml中添加log4j配置: 1 2 ...
- PoEdu - C++阶段班【Po学校】- 第1课
1 C++开讲 C ++ 伟大的编程语言:能提高程序运行效率,节约更多的资源,"正确的使用C++,能够抑制全球变暖问题". 2 C++能力雷达图 通过 1效率 2灵活度 3 抽象 ...
- 斯坦福第六课:逻辑回归(Logistic Regression)
6.1 分类问题 6.2 假说表示 6.3 判定边界 6.4 代价函数 6.5 简化的成本函数和梯度下降 6.6 高级优化 6.7 多类分类:一个对所有 6.1 分类问题 在分类问题中 ...
- Hibernate配置文件与映射文件的创建
1. config文件的创建: 内容: <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE hib ...