转自:https://blog.csdn.net/qq_16912257/article/details/79099581

https://blog.csdn.net/thriving_fcl/article/details/51406780

1.简单使用

from gensim.models import word2vec

sents = [
'I am a good student'.split(),
'Good good study day day up'.split()
]
model = word2vec.Word2Vec(sents, size=100, window=5, min_count=2, workers=10)
# 打印单词'good'的词向量
print(model.wv.word_vec('good'))
# 打印和'good'相似的前2个单词
print(model.wv.most_similar('good', topn=2))
# 保存模型到文件
model.save('w2v.model')

参数:

  • size:词向量输出维度
  • window:上下文窗口
  • min_count:忽略词频小于此阈值的单词
  • workers:使用的线程数

2.增量训练

def retrain(data_file, old_model_file, new_model_file):
sents = XXX
model = word2vec.Word2Vec.load(old_model_file)
model.build_vocab(sents, update=True)
model.train(sents, total_examples=model.corpus_count, epochs=model.iter)
model.save(new_model_file)

3.大语料库输入

将语料都转换为一个python的list作为输入是很方便,但是如果输入的语料特别大,大到内存都装不下,就不能采用这种方式。gensim的API并不要求sentences必须是list对象,只要输入的sentences是iterable的就行,那我们只要一次载入一个句子,训练完之后再将其丢弃,内存就不会因为语料过大而不够了。我们通过下面的代码就可以生成一个iterator。事先已经将训练语料分词,词与词之间采用空格分开,并保存在一个文档里。

class sentences_generator():
def __init__(self, filename):
self.filename = filename def __iter__(self):
for line in open(self.filename):
sentence = line.rstrip().split(' ')
yield sentence

使用genism训练词向量【转载】的更多相关文章

  1. PyTorch在NLP任务中使用预训练词向量

    在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用ge ...

  2. 文本分布式表示(二):用tensorflow和word2vec训练词向量

    看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...

  3. 文本分类实战(一)—— word2vec预训练词向量

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  4. tensorflow如何正确加载预训练词向量

    使用预训练词向量和随机初始化词向量的差异还是挺大的,现在说一说我使用预训练词向量的流程. 一.构建本语料的词汇表,作为我的基础词汇 二.遍历该词汇表,从预训练词向量中提取出该词对应的词向量 三.初始化 ...

  5. 基于word2vec训练词向量(二)

    转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hi ...

  6. 基于word2vec训练词向量(一)

    转自:https://blog.csdn.net/fendouaini/article/details/79905328 1.回顾DNN训练词向量 上次说到了通过DNN模型训练词获得词向量,这次来讲解 ...

  7. DNN模型训练词向量原理

    转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处 ...

  8. pytorch中如何使用预训练词向量

    不涉及具体代码,只是记录一下自己的疑惑. 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象.这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引.那么我们会根据 ...

  9. word2vec预训练词向量

    NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算 ...

随机推荐

  1. 金蝶K3 WISE BOM多级展开_BOM成本表

    /****** Object: StoredProcedure [dbo].[pro_bobang_BOMCost] Script Date: 07/29/2015 16:09:11 ******/ ...

  2. Java Spring Boot VS .NetCore (一)来一个简单的 Hello World

    系列文章 Java Spring Boot VS .NetCore (一)来一个简单的 Hello World Java Spring Boot VS .NetCore (二)实现一个过滤器Filte ...

  3. Consideration about improving mathematics study

    In this article, I’ll present my ideas about how to improve mathematics study, which are the forewor ...

  4. Integer Replacement

    https://leetcode.com/problems/integer-replacement/#/solutions 这题是一道典型的搜索问题,我采用广度搜索,可以直接输出最短路径.这题的tes ...

  5. react的Virtual DOM

    一.Virtual DOMVirtual DOM是一个JavaScript对象,v8引擎使得js可以高效运行,而直接操作DOM很慢.Virtual DOM本质上就是在JS和DOM之间做了一个缓存.可以 ...

  6. Android系统API综述

    下述能够找到Android开发源代码: 1. http://grepcode.com/project/repository.grepcode.com/java/ext/com.google.andro ...

  7. 【循环数组的最大字串和】Maximal-sum Subsequence

    [循环数组的最大字串和]Maximal-sum Subsequence PROBLEM 题目描述 给一个 N×N 的矩阵 M,可以取连续的一段数(必须是横着或者竖着或者斜着,这个矩阵是循环的,具体如下 ...

  8. jQuery (01) 浏览器的事件模型

    浏览器的事件模型 由网景公司引入的 DOM0 级事件模型 把事件处理程序绑定到 DOM 元素的属性上: ele.onclick(); ele.onDOMContentLoad(); ele.onloa ...

  9. 遍历文件后缀名 为 .java的文件

    import java.io.File; import java.io.FileFilter; //创建一个功夫类继承文件管理类 public  class FileFu implements Fil ...

  10. Hibernate-day04

    HIbernate中的HQL查询 Hibernate中的查询方式:1,使用HQL:使用hibernate提供的面向对象的查询语句;2,使用SQL:在hibernate中允许使用原生的SQL直接查询;3 ...