http://www.lydsy.com/JudgeOnline/problem.php?id=3143 (题目链接)

题意

  一个无向连通图,顶点从1编号到N,边从1编号到M。每一步以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,可以获得等于这条边的编号的分数。现在,请你对这M条边进行编号,使得获得的总分的期望值最小。

Solution

  一开始直接无脑打了个记录边的算期望的高斯消元,毫无疑问TLE。。

  正解是直接对点算到达的概率,然后根据每条边两端点的到达概率再算出这条边的概率。

细节

  注意到达n号点就不能再走了。

代码

// bzoj3143
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=600,maxm=500*500+10;
struct edge {int to,next,w;}e[maxm<<1];
int f[maxn][maxn],r[maxn],u[maxm],v[maxm],cnt,n,m;
double a[maxn][maxn],t[maxm]; bool cmp(double a,double b) {
return a>b;
}
void Gauss() {
for (int i=1;i<n;i++) {
int r=i;
for (int j=i+1;j<n;j++) if (fabs(a[r][i])<fabs(a[j][i])) r=j;
if (a[r][i]==0) continue;
if (r!=i) for (int j=1;j<=n;j++) swap(a[i][j],a[r][j]);
for (int j=1;j<n;j++) if (j!=i) {
for (int k=n;k>=i;k--)
a[j][k]-=a[j][i]/a[i][i]*a[i][k];
}
}
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++) {
scanf("%d%d",&u[i],&v[i]);
f[u[i]][v[i]]=f[v[i]][u[i]]=1;
r[u[i]]++,r[v[i]]++;
}
for (int i=1;i<n;i++) {
for (int j=1;j<n;j++) a[i][j]=f[i][j]*(1.0/r[j]);
a[i][i]-=1;
}
a[1][n]=-1;
Gauss();
for (int i=1;i<=m;i++) {
double U=u[i]!=n ? a[u[i]][n]/a[u[i]][u[i]] : 0;
double V=v[i]!=n ? a[v[i]][n]/a[v[i]][v[i]] : 0;
t[i]=U*(1.0/r[u[i]])+V*(1.0/r[v[i]]);
}
sort(t+1,t+1+m,cmp);
double ans=0;
for (int i=1;i<=m;i++) ans+=i*t[i];
printf("%.3lf",ans);
return 0;
}

  

【bzoj3143】 Hnoi2013—游走的更多相关文章

  1. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  2. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  3. BZOJ3143 [Hnoi2013]游走 【高斯消元】

    题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  4. BZOJ3143: [Hnoi2013]游走(期望DP 高斯消元)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3597  Solved: 1618[Submit][Status][Discuss] Descript ...

  5. BZOJ3143 [Hnoi2013]游走

    首先高斯消元解出每个点被走到的概率 注意到这里走到$n$就停下来了,所以$P(n) = 0$ 解出来以后,给每条边$(u, v)$赋边权$P(u) + P(v)$即可,然后直接贪心 /******** ...

  6. bzoj千题计划290:bzoj3143: [Hnoi2013]游走

    http://www.lydsy.com/JudgeOnline/problem.php?id=3143 计算每条边经过的概率e[] 然后经过概率多的分配的编号大,经过概率少的分配的编号小 如何计算边 ...

  7. 【数学期望】【高斯消元】bzoj3143 [Hnoi2013]游走

    和hdu5955很像.也是注意从结点1出发,其概率要在方程左侧+1. 边的期望和点的期望之间转换巧妙 http://blog.csdn.net/thy_asdf/article/details/473 ...

  8. 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)

    传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...

  9. bzoj3143: [Hnoi2013]游走(贪心+高斯消元)

    考虑让总期望最小,那么就是期望经过次数越多的边贪心地给它越小的编号. 怎么求每条边的期望经过次数呢?边不大好算,我们考虑计算每个点的期望经过次数f[x],那么一条边的期望经过次数就是f[x]/d[x] ...

  10. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

随机推荐

  1. Atitit 延迟绑定架构法attilax总结

    Atitit 延迟绑定架构法attilax总结 配置文件的延迟绑定1 Api属性与方法的回调延迟绑定1 后期绑定和前期绑定2 延迟调用2 用 Java 语言延迟绑定2 什么是推迟绑定 C++3 配置文 ...

  2. 由于目标计算机积极拒绝,无法连接。 192.168.1.106:8078 说明: 执行当前 Web 请求期间,出现未经处理的异常。

    请检查堆栈跟踪信息,以了解有关该错误以及代码中导致错误的出处的详细信息. 异常详细信息: System.Net.Sockets.SocketException: 由于目标计算机积极拒绝,无法连接. 1 ...

  3. Scala override

    var 变量不能在子类中重写,除非父类是抽象类 在抽象类中var变量不能赋初值 abstract class Person{ val name="" def name1=" ...

  4. android图片验证码--自绘控件

    自绘控件的内容都是自己绘制出来的 大致流程如下: 1.定义一个类继承view 使用TypedArray初始化属性集合 在view的构造方法中 有一个AttributeSet的参数 很明显是用来保存控件 ...

  5. Android Weekly Notes Issue #225

    Android Weekly Issue #225 October 2nd, 2016 Android Weekly Issue #225 本期内容包括: Android 7.0的Quick Sett ...

  6. Android中使用Notification实现普通通知栏(Notification示例一)

    Notification是在你的应用常规界面之外展示的消息.当app让系统发送一个消息的时候,消息首先以图表的形式显示在通知栏.要查看消息的详情需要进入通知抽屉(notificationdrawer) ...

  7. Linq表达式和Lambda表达式用法对比

    什么是Linq表达式?什么是Lambda表达式?前一段时间用到这个只是,在网上也没找到比较简单明了的方法,今天就整理了一下相关知识,有空了再仔细研究研究 public Program() { List ...

  8. PHP curl 函数

    转载http://sunking.sinaapp.com/archives/111 最近使用curl的时候,发现了一个比较好用的函数,当然是初级者适用的一个函数,就是curl_getinfo(), 在 ...

  9. 升级 python 2.6.6 系统到 2.7.10 版本

    CentOS 6 系统默认 Python 版本是:2.6.6 平时在使用中遇到很多的库要求是 2.7.x 版本的库,比如使用 ConfigParser 库,在 2.6 版本库就不支持没有 value ...

  10. linux文件系统体系结构 和 虚拟文件系统(VFS)

    图 1. Linux 文件系统组件的体系结构 用户空间包含一些应用程序(例如,文件系统的使用者)和 GNU C 库(glibc),它们为文件系统调用(打开.读取.写和关闭)提供用户接口.系统调用接口的 ...