Python并发编程之消息队列补充及如何创建线程池(六)
大家好,并发编程
进入第六篇。
在第四章,讲消息通信时,我们学到了Queue消息队列的一些基本使用。昨天我在准备如何创建线程池这一章节的时候,发现对Queue消息队列的讲解有一些遗漏的知识点,而这些知识点,也并不是无关紧要的,所以在今天的章节里,我要先对Queue先做一些补充以防大家对消息队列有一些知识盲区。
再次提醒:
本系列所有的代码均在Python3下编写,也建议大家尽快投入到Python3的怀抱中来。
本文目录
- 消息队列的先进先出
- 创建多线程的两种方式
. 消息队列的先进先出
首先,要告诉大家的事,消息队列可不是只有queue.Queue
这一个类,除它之外,还有queue.LifoQueue
和queue.PriorityQueue
这两个类。
从名字上,对于他们之间的区别,你大概也能猜到一二吧。
queue.Queue
:先进先出队列queue.LifoQueue
:后进先出队列queue.PriorityQueue
:优先级队列
先来看看,我们的老朋友,queue.Queue
。
所谓的先进先出
(FIFO,First in First Out),就是先进入队列的消息,将优先被消费。
这和我们日常排队买菜是一样的,先排队的人肯定是先买到菜。
用代码来说明一下
import queue
q = queue.Queue()
for i in range(5):
q.put(i)
while not q.empty():
print q.get()
看看输出,符合我们先进先出的预期。存入队列的顺序是01234
,被消费的顺序也是01234
。
0
1
2
3
4
再来看看Queue.LifoQueue
,后进先出,就是后进入消息队列的,将优先被消费。
这和我们羽毛球筒是一样的,最后放进羽毛球筒的球,会被第一个取出使用。
用代码来看下
import queue
q = queue.LifoQueue()
for i in range(5):
q.put(i)
while not q.empty():
print q.get()
来看看输出,符合我们后进后出的预期。存入队列的顺序是01234
,被消费的顺序也是43210
。
4
3
2
1
0
最后来看看Queue.PriorityQueue
,优先级队列。
这和我们日常生活中的会员机制有些类似,办了金卡的人比银卡的服务优先,办了银卡的人比不办卡的人服务优先。
来用代码看一下
from queue import PriorityQueue
# 重新定义一个类,继承自PriorityQueue
class MyPriorityQueue(PriorityQueue):
def __init__(self):
PriorityQueue.__init__(self)
self.counter = 0
def put(self, item, priority):
PriorityQueue.put(self, (priority, self.counter, item))
self.counter += 1
def get(self, *args, **kwargs):
_, _, item = PriorityQueue.get(self, *args, **kwargs)
return item
queue = MyPriorityQueue()
queue.put('item2', 2)
queue.put('item5', 5)
queue.put('item3', 3)
queue.put('item4', 4)
queue.put('item1', 1)
while True:
print(queue.get())
来看看输出,符合我们的预期。我们存入入队列的顺序是25341
,对应的优先级也是25341
,可是被消费的顺序丝毫不受传入顺序的影响,而是根据指定的优先级来消费。
item1
item2
item3
item4
item5
. 创建多线程的两种方式
在使用多线程处理任务时也不是线程越多越好,由于在切换线程的时候,需要切换上下文环境,依然会造成cpu的大量开销。为解决这个问题,线程池的概念被提出来了。预先创建好一个较为优化的数量的线程,让过来的任务立刻能够使用,就形成了线程池。
在Python3中,创建线程池是通过concurrent.futures
函数库中的ThreadPoolExecutor
类来实现的。
import time
import threading
from concurrent.futures import ThreadPoolExecutor
def target():
for i in range(5):
print('running thread-{}:{}'.format(threading.get_ident(), i))
time.sleep(1)
#: 生成线程池最大线程为5个
pool = ThreadPoolExecutor(5)
for i in range(100):
pool.submit(target) # 往线程中提交,并运行
从结果来看,前面设置线程池最大线程数5个,有生效。
running thread-11308:0
running thread-12504:0
running thread-5656:0
running thread-12640:0
running thread-7948:0
running thread-11308:1
running thread-5656:1
running thread-7948:1
running thread-12640:1
running thread-12504:1
...
...
除了使用上述第三方模块的方法之外,我们还可以自己结合前面所学的消息队列来自定义线程池。
这里我们就使用queue来实现一个上面同样效果的例子,大家感受一下。
import time
import threading
from queue import Queue
def target(q):
while True:
msg = q.get()
for i in range(5):
print('running thread-{}:{}'.format(threading.get_ident(), i))
time.sleep(1)
def pool(workers,queue):
for n in range(workers):
t = threading.Thread(target=target, args=(queue,))
t.daemon = True
t.start()
queue = Queue()
# 创建一个线程池:并设置线程数为5
pool(5, queue)
for i in range(100):
queue.put("start")
# 消息都被消费才能结束
queue.join()
输出是和上面是完全一样的效果
running thread-11308:0
running thread-12504:0
running thread-5656:0
running thread-12640:0
running thread-7948:0
running thread-11308:1
running thread-5656:1
running thread-7948:1
running thread-12640:1
running thread-12504:1
...
...
构建线程池的方法,是可以很灵活的,大家有举可以自己多研究。但是建议只要掌握一种自己熟悉的,能快速上手的就好了。
好了,今天的内容就是这些了。
Python并发编程之消息队列补充及如何创建线程池(六)的更多相关文章
- Python并发编程-RabbitMQ消息队列
RabbitMQ队列 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列 ...
- python并发编程-进程间通信-Queue队列使用-生产者消费者模型-线程理论-创建及对象属性方法-线程互斥锁-守护线程-02
目录 进程补充 进程通信前言 Queue队列的基本使用 通过Queue队列实现进程间通信(IPC机制) 生产者消费者模型 以做包子买包子为例实现当包子卖完了停止消费行为 线程 什么是线程 为什么要有线 ...
- JUC 并发编程--09, 阻塞队列: DelayQueue, PriorityBlockingQueue ,SynchronousQueue, 定时任务线程池: ScheduledThreadPoolExecutor
先看DelayQueue 这个是用优先级队列实现的无界限的延迟队列,直接上代码: /** * 这个是 {@link DelayQueue} 延时队列 的验证使用类 */ class MyDelayed ...
- Python并发编程04 /多线程、生产消费者模型、线程进程对比、线程的方法、线程join、守护线程、线程互斥锁
Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线程join.守护线程.线程互斥锁 目录 Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线 ...
- 并发编程中死锁、递归锁、进程/线程池、协程TCP服务器并发等知识点
1.死锁 定义; 类似两个人分别被囚禁在两间房子里,A手上拿着的是B囚禁房间的钥匙,而B拿着A的钥匙,两个人都没法出去,没法给对方开锁,进而造成死锁现象.具体例子代码如下: # -*-coding:u ...
- Python并发编程二(多线程、协程、IO模型)
1.python并发编程之多线程(理论) 1.1线程概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程(流水线的工作需要电源,电源就相当于 ...
- Python 3 并发编程多进程之队列(推荐使用)
Python 3 并发编程多进程之队列(推荐使用) 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 可以往 ...
- python 并发编程 多进程 队列目录
python 并发编程 多进程 队列 python 并发编程 多进程 生产者消费者模型介绍 python 并发编程 多进程 生产者消费者模型总结 python 并发编程 多进程 JoinableQue ...
- Python并发编程03 /僵孤进程,孤儿进程、进程互斥锁,进程队列、进程之间的通信
Python并发编程03 /僵孤进程,孤儿进程.进程互斥锁,进程队列.进程之间的通信 目录 Python并发编程03 /僵孤进程,孤儿进程.进程互斥锁,进程队列.进程之间的通信 1. 僵尸进程/孤儿进 ...
随机推荐
- Kafka监控工具kafka-monitor v0.1简要介绍
Kafka Monitor为Kafka的可视化管理与监控工具,为Kafka的稳定运维提供高效.可靠.稳定的保障,这里主要简单介绍Kafka Monitor的相关功能与页面的介绍: Kafka Moni ...
- java常用数据类型使用Day008
1,java常用数据类型使用 package cn.edu.fhj.day008; import java.util.ArrayList; import java.util.HashMap; impo ...
- 马昕璐 201771010118《面向对象程序设计(java)》第十六周学习总结
第一部分:理论知识学习部分 程序:一段静态的代码,应用程序执行的蓝本. 进程:是程序的一次动态执行,它对应了从代码加载.执行至执行完毕的一个完整过程. 多线程:进程执行过程中产生的多条执行线索,比进程 ...
- [LeetCode] Keys and Rooms 钥匙与房间
There are N rooms and you start in room 0. Each room has a distinct number in 0, 1, 2, ..., N-1, an ...
- 【数据结构】红黑树与跳表-(SortSet)-(TreeMap)-(TreeSet)
SortSet 有序的Set,其实在Java中TreeSet是SortSet的唯一实现类,内部通过TreeMap实现的:而TreeMap是通过红黑树实现的:而在Redis中是通过跳表实现的: Skip ...
- [error] - Build path is incomplete. Cannot find class file for org/aspectj/weaver/refl
将本地仓库中mybatis 的jar 包删除,然后在eclipse 中右键工程选中 Maven->upgrade ..
- jq 点击复制div里面的内容 如果粘贴到富文本中,会将样式,里面所有的标签,文字一并粘贴进去
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- 一篇年薪60万的JVM性能调优文章
JVM 调优概述 性能定义 吞吐量 - 指不考虑 GC 引起的停顿时间或内存消耗,垃圾收集器能支撑应用达到的最高性能指标. 延迟 - 其度量标准是缩短由于垃圾啊收集引起的停顿时间或者完全消除因垃圾收集 ...
- [Swift]LeetCode156.二叉树的上下颠倒 $ Binary Tree Upside Down
Given a binary tree where all the right nodes are either leaf nodes with a sibling (a left node that ...
- [Swift]LeetCode3. 无重复字符的最长子串 | Longest Substring Without Repeating Characters
Given a string, find the length of the longest substring without repeating characters. Examples: Giv ...