NumPy:数组计算

NumPy是高性能科学计算和数据分析的基础包。它是Pandas等其他各种工具的基础

NumPy的主要功能:

  ndarray,一个多维数据结构,高校且节省空间

  无需循环即可对整组数据进行快速运算的数学函数

  读写磁盘数据的工具以及用于操作内存映射文件的工具

  线性代数、随机数生成和傅里叶变化功能

  用于集成C、C++等代码的工具

安装方法:pip install numpy(如果显示命令不存在可以尝试python -m install numpy)

引用方式通常喜欢给numpy模块别名:import numpy as np

NumPy简单使用

例1:已知若干家跨国公司的市值(美元),将其换算为人民币

例2:已知购物车中每件商品的价格与商品件数,求总金额

创建ndarray:np.array()

ndarray是多维数组结构,与列表的区别是:

  数组对象内的元素类型必须相同

  数组大小不可修改

常用属性

T    数组的转置(对二维及以上数组而言)

dtype   数组元素的数据类型

size     数组元素的个数

ndim      数组的维数

shape    数组的维度大小(以元祖的形式)

ndarray创建

arange()    比我们的python3里面的range更加强大,支持浮点数范围

linspance()    类似于arange(),第三个参数为数组长度

zeros()      根据指定形状和dtype创建全0数组

ones()       根据指定形状和dtype创建全1数组

empty()     根据指定形状和dtype创建空数组(随机值)

eye()      根据指定边长和dtype创建单位矩阵

NumPy索引切片

数组和标量(数字)之间的运算

  a+1 a*3 1//a a**0.5

同样大小数组之间的运算

  a+b a/b a**b

数组的索引

一维数组:a[5]

多维数组:

  列表式写法:a[2][3]

  新式写法:a[2,3] (推荐)  逗号隔开,前面作用于行后面作用于列

数组的切片 

一维数组:a[5:8]     a[4:]     a[2:10] = 1

多维数组:a[1:2, 3:4]   a[:,3:5]       a[:,1]

与列表不同,数组切片时并不会自动复制,在切片数组上的修改会影响原数组(因为不会复制一份出去而是沿用原来的内存空间中的值)。 【解决方法:copy()】

NumPy布尔型索引

问题:给一个数组,选出数组中所有大于5的数。

答案:a[a>5]

原理: a>5会对a中的每一个元素进行判断,返回一个布尔数组 布尔型索引:将同样大小的布尔数组传进索引,会返回一个由所有True对应位置的元素的数组

问题2:给一个数组,选出数组中所有大于5的偶数。

问题3:给一个数组,选出数组中所有大于5的数和偶数。

答案:

    a[(a>5) & (a%2==0)]

    a[(a>5) | (a%2==0)]

NumPy花式索引

问题1:对于一个数组,选出其第1,3,4,6,7个元素,组成新的二维数组。

  答案:a[[1,3,4,6,7]]

问题2:对一个二维数组,选出其第一列和第三列,组成新的二维数组。

  答案:a[:,[1,3]]

必会知识点

浮点数特殊值

浮点数:float

浮点数有两个特殊值:

  nan(Not a Number):不等于任何浮点数(nan != nan)

  inf(infinity):比任何浮点数都大

NumPy中创建特殊值:np.nan np.inf

在数据分析中,nan常被用作表示数据缺失值

sum 求和

cumsum 求前缀和(截至当前元素及其前面所有的元素和)

mean 求平均数

std 求标准差

var 求方差

min 求最小值

max 求最大值

argmin 求最小值索引

argmax 求最大值索引

总结

数组中的数据类型必须一致,并且数组大小不可再被更改‘

对于数组求相应值由四种不同的方式:

  正常的索引切片取值

  行列分开的切片取值

  布尔型(生成一个与原数组各元素一一对应的布尔值数组,原数组与该布尔值列表一一对应,值为True的放行~~~)

  

Numpy基本操作的更多相关文章

  1. NumPy基本操作快速熟悉

    NumPy 是 Python 数值计算非常重要的一个包.很多科学计算包都是以 NumPy 的数组对象为基础开发的. 本文用代码快速过了一遍 NumPy 的基本操作,对 NumPy 整体有一个把握.希望 ...

  2. 矩阵库Numpy基本操作

    NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作. 下面对numpy中的操作进行总结. numpy包含两种基本的数据类型 ...

  3. numpy数组的操作

    numpy - 介绍.基本数据类型.多维数组ndarray及其内建函数 http://blog.csdn.net/pipisorry/article/details/22107553 http://w ...

  4. numpy的使用方法

    一.numpy快速入门 1.什么是numpy: numpy是python的一个矩阵类型,提供了大量矩阵处理的函数,非正式来说,就是一个使运算更容易,执行更迅速的库,因为它的内部运算是通过c语言而不是p ...

  5. Python的工具包[0] -> numpy科学计算 -> numpy 库及使用总结

    NumPy 目录 关于 numpy numpy 库 numpy 基本操作 numpy 复制操作 numpy 计算 numpy 常用函数 1 关于numpy / About numpy NumPy系统是 ...

  6. Numpy和Pandas的使用入门

    Numpy Numpy基本数据结构 np.array()函数接受一个多维list,返回对应纬度的矩阵 vector = np.array([1, 2, 3, 4]) matrix = np.array ...

  7. Pandas快速上手(一):基本操作

    本文包含一些 Pandas 的基本操作,旨在快速上手 Pandas 的基本操作. 读者最好有 NumPy 的基础,如果你还不熟悉 NumPy,建议您阅读NumPy基本操作快速熟悉. Pandas 数据 ...

  8. Python之路-numpy模块

    这里是首先需要安装好Anaconda Anaconda的安装参考Python之路-初识python及环境搭建并测试 配置好环境之后开始使用Jupyter Notebook 1.打开cmd,输入 jup ...

  9. 第03章 科学计算库Numpy

    016.Numpy数据结构    关于矩阵运算的库 矩阵 017.Numpy基本操作 判断每一个元素的 018.Numpy矩阵属性 019.Numpy矩阵操作 020.Numpy常用函数 按列拼接就用 ...

随机推荐

  1. Centos7破解密码的两种方法--技术流ken

    Centos7忘记密码   在工作或者自己练习的时候我们难免会大意忘掉自己的root密码,有些同学忘掉密码竟然第一选择是重装系统,工作中可万万使不得! 本篇博客将讲解两种最常用的破解centos7忘掉 ...

  2. [React] 从零开始的react

    组件 1. 无状态组件 在React中,组件的名字必须用大写字母开头,而包含该组件定义的文件名也应该是大写字母(便于区分,也可以不是). 无状态组件是纯展示组件,仅仅只是用于数据的展示,只根据传入的p ...

  3. nginx错误界面优化和日志管理

    nginx错误界面优化 在进行web访问的时候,经常会遇到网站打不开报错的情况,nginx默认的界面并不美观,我们可以通过重定向到自定义的错误页面,提升用户体验,比如淘宝的错误页面还有商品信息和广告. ...

  4. 第12章 添加对外部认证的支持 - Identity Server 4 中文文档(v1.0.0)

    注意 对于任何先决条件(例如模板),首先要查看概述. 接下来,我们将添加对外部认证的支持.这非常简单,因为您真正需要的是ASP.NET Core兼容的身份验证处理程序. ASP.NET Core本身支 ...

  5. Maven(十三)Maven统一声明版本号

    情景:当使用Spring下的多个包时,为了方便版本号的统一管理,避免出现因不同版本号造成的错误,必须更改为统一的版本号,但是当项目过多时手动修改不方便,因此引入此标签可以方便进行统一的修改. pom. ...

  6. 原生js实现数据单向绑定

    Object.defineProperty()方法直接在对象上定义一个新属性,或修改对象上的现有属性,并返回该对象. Object.defineProperty(obj, prop, descript ...

  7. Fundebug后端Java异常监控插件更新至0.3.1,修复Maven下载失败的问题

    摘要: 0.3.1修复Maven下载失败的问题. 监控Java应用 1. pom.xml 配置fundebug-java依赖 <dependency> <groupId>com ...

  8. jsonp promise 封装

    import originJsonp from 'jsonp' export default function jsonp(url, data, option) { url += (url.index ...

  9. float与double

    对数值类型的细节了解在大学里就是一带而过,自己始终也没好好看过.这是在csdn上看到的一篇文章,挺好的,记录下来. https://blog.csdn.net/Demon__Hunter/articl ...

  10. Windchill基本业务对象-文档

    文档的类型: (1)WTDocumetManster :是文档的主要信息,一个文档只有一条记录:(2)WTDocument:是文档小版本记录,每一个文档小版本都有一条记录: 备注:(1)文档大版本记录 ...