应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]

解答: $$\beex \bea I(x)&=\int_{-1}^1 \frac{\rd t}{\sqrt{1-t^2}(t-x)}\\ &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\rd \tt}{\sin\tt-x}\quad(t=\sin\tt)\\ &=\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\rd \tau}{\sin\tau-x}\quad(\pi-\tt=\tau)\\ &=\frac{1}{2}\sez{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} +\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\frac{\rd \tt}{\sin\tt-x}}\\ &=\frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\rd \tt}{\sin\tt-x}\\ &=\frac{1}{2}\int_{|z|=1}\frac{1}{\frac{z-z^{-1}}{2i}-x}\cdot \frac{\rd z}{iz}\\ &=\int_{|z|=1}\frac{\rd z}{z^2-2ixz-1}\\ &=\sedd{\ba{ll} 2\pi i\cdot \underset{z=i(x+\sqrt{x^2-1})}{\Res}\cfrac{1}{z^2-2ixz-1},&x<-1\\ 2\pi i\cdot \underset{z=i(x-\sqrt{x^2-1})}{\Res}\cfrac{1}{z^2-2ixz-1},&x>1 \ea}\\ &=\sedd{\ba{ll} \cfrac{\pi}{\sqrt{x^2-1}},&x<-1\\ -\cfrac{\pi}{\sqrt{x^2-1}},&x>1 \ea}\\ &=-\frac{\pi}{x\sqrt{1-\frac{1}{x^2}}}. \eea \eeex$$

应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]的更多相关文章

  1. 求复变函数的 Taylor 展式与 Laurent 展式[华中师范大学2010年复变函数复试试题]

    设 $$\bex f(z)=\frac{1}{(z-1)(z-2)}. \eex$$ (1) 求 $f(z)$ 在 $|z|<1$ 内的 Taylor 展式. (2) 求 $f(z)$ 在圆环 ...

  2. 「学习记录」《数值分析》第二章计算实习题(Python语言)

    在假期利用Python完成了<数值分析>第二章的计算实习题,主要实现了牛顿插值法和三次样条插值,给出了自己的实现与调用Python包的实现--现在能搜到的基本上都是MATLAB版,或者是各 ...

  3. poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】

    题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...

  4. 「学习记录」《数值分析》第三章计算实习题(Python语言)

    第三题暂缺,之后补充. import matplotlib.pyplot as plt import numpy as np import scipy.optimize as so import sy ...

  5. 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]

    家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...

  6. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  7. BERT解析及文本分类应用

    目录 前言 BERT模型概览 Seq2Seq Attention Transformer encoder部分 Decoder部分 BERT Embedding 预训练 文本分类试验 参考文献 前言 在 ...

  8. 中国石油大学(华东)数学实验(MATLAB)复习

    作者:张世琛 函数的导数 $$ 求函数y=log(x+\sqrt{1+x^2})的一阶和二阶导数 $$ syms x; y=log(x+sqrt(1+x^2)); dydx=diff(y,x); dy ...

  9. [hdu6987]Cycle Binary

    定义$x$为$s$的周期,当且仅当$\forall 1\le i\le |s|-x,s_{i}=s_{i+x}$​​(字符串下标从1开始) 令$per(s)$为$s$的正周期构成的集合,$\min p ...

随机推荐

  1. css3新特性合集

    转自:https://www.cnblogs.com/xiaoxie2016/p/5964694.html (若原作者对此转载有疑问,联系删除,谢谢!) animation    IE10 anima ...

  2. Linux中Tomcat设置开机启动

    设置方法 1.修改/etc/rc.d/rc.local,使用vi /etc/rc.d/rc.local 命令 2.在/etc/rc.d/rc.local文件最后添加下面两行脚本 export JAVA ...

  3. kubernetes 集群安装etcd集群,带证书

    install etcd 准备证书 https://www.kubernetes.org.cn/3096.html 在master1需要安装CFSSL工具,这将会用来建立 TLS certificat ...

  4. Spring-扫描注解原理,注解自动扫描原理分析

    注解自动扫描原理分析 在spring的配置文件中加入如下代码,spring便开启了自动扫描,那么它的底层到底是如何实现的呢? <context:component-scan base-packa ...

  5. poj 2255 Tree Recovery(求后序遍历,二叉树)

    版权声明:本文为博主原创文章,未经博主同意不得转载.vasttian https://blog.csdn.net/u012860063/article/details/37699219 转载请注明出处 ...

  6. 勇者斗恶龙 uva 11292(简单贪心)

    思路:先将龙和士兵进行分别排序从小到大.然后,每次找当前最小龙的第一个大于它的骑手之后退出,开始下一个龙,重复上一次操作. #include<iostream> #include<a ...

  7. day23--面向对象之封装、继承、多态

    面向对象的三大特性: 封装: 在类的内部(class内部)可以由属性和方法,外部代码可以通过直接调用实例变量的方法来操作数据,这样就隐藏了内部的逻辑,但是外部还是可以直接修改实例的属性,因此当需求中存 ...

  8. Android测试(四):Instrumented 单元测试

    原文:https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html Instrume ...

  9. Python第二天: 变量详解及变量赋值

    目录 什么是变量? 怎么写一个好的变量? 下划线命名法及驼峰命名法 结语 目录 此文章针对刚学Python的小白,若觉得对变量有很好的掌握,可以观看其他的文章 在这里, 我说一下我对变量的简单总结: ...

  10. Python @property 方法

    考察 Student 类: class Student(object): def __init__(self, name, score): self.name = name self.score = ...