1.Boosting方法思路

Boosting方法通过将一系列的基本分类器组合,生成更好的强学习器

基本分类器是通过迭代生成的,每一轮的迭代,会使误分类点的权重增大

Boosting方法常用的算法是AdaBoost(Adaptive Boosting)、GBRT (Gradient Tree Boosting)

2.AdaBoost算法

算法要解决的2个问题(分类)

  • 如何改变训练集的权值

  提高前一轮分类错误样本的权值,降低分类正确样本的权值

  • 如何将基本分类器组合成强学习器

  加权多数表决法,通过投票来决定最后的结果,分类误差率小的基本分类器在投票中起较大作用,分类误差率大的基本分类器在投票中起较小作用。

算法思想

输入:训练集D;弱学习算法;训练轮数T

1)初始化权值分布D1(x) = 1/n

2)(for i=1;i<T;i++){

  a.计算不同基本分类器G的分类误差率e,找到最小分类误差率ei

 

  b.根据最小分类误差率ei,选择最小的基本分类器Gi

  c.计算Gi的权值αi;

  

  d.更新权值分布为Di+1(x);

 

  e.计算最终分类器G(x),并用G(x)分类,没有误分类点退出循环

}

例子

例子来源于李航《统计学习方法》P140,数据表如下

x 0 1 2 3 4 5 6 7 8 9
y 1 1 1 -1 -1 -1 1 1 1 -1

首先是算法的输入,训练集D就是上边的表格,弱学习算法采用决策树桩(选一个数v,比v大的分一类,比v小的分一类),训练轮数输入5

1)初始化权值分布$D_1(x) =({1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10})$

2)第一轮,i=1

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

当v取0.5时,x=1,2,6,7,8,9分错类,故e = ${0.1*1+0.1*1+0.1*1+0.1*1+0.1*1} = 0.5$

同理可求v取1.5,2.5,…,8.5时的分类误差率,不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.5 0.4 0.3 0.4 0.5 0.6 0.5 0.4 0.3

当v=2.5时,x=6,7,8分错类,分类误差率最低为e1 = ${0.1*1+0.1*1+0.1*1} = 0.3$

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7

b.因此可以得到基本分类器

$$G_1(x) = \begin{cases}1,&x<2.5\\-1,&x>2.5\end{cases}$$

c.计算G1(x)的权值α1

$$α_1 = {1 \over 2} ln {1- e_1 \over e_1} = 0.4236$$

d.更新权值分布为D2(x)
$$Z_1=0.1*e^{-0.4236*1*1}+0.1*e^{-0.4236*1*1}+...+0.1*e^{-0.4236*-1*-1}=0.7e^{-0.4236}+0.3e^{0.4236}$$

$$w_{21}={0.1e^{-0.4236} \over 0.7e^{-0.4236}+0.3e^{0.4236}} = 0.07143$$

同理可以计算其他w2j,最后得到更新后的权值分布D2,这个D2留着在下一轮用

$$D_2=(0.07143,0.07143,0.07143,0.07143,0.07143,0.07143,0.16667,0.16667,0.16667,0.07143)$$

e.计算第一轮最终分类器G(x)

$$G(x) =0.4236G_1(x) $$

用sign[G(x)]分类有x=6,7,8三个误分类点

第二轮,i=2

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.643 0.571 0.5 0.571 0.643 0.714 0.548 0.381 0.214

当v=8.5时,x=4,5,6分错类,分类误差率最低为e2 = ${0.07143*1+0.07143*1+0.07143*1} =0.2143$

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.357 0.429 0.5 0.429 0.357 0.286 0.452 0.619 0.786

b.因此可以得到基本分类器

$$G_2(x) = \begin{cases}1,&x<8.5\\-1,&x>8.5\end{cases}$$

c.计算G2(x)的权值α2

$$α_2 = {1 \over 2} ln {1- e_2 \over e_2} = 0.6496$$

d.更新权值分布为D3(x)

$$D_3=(0.0455,0.0455,0.0455,0.1667,0.1667,0.1667,0.1060,0.1060,0.1060,0.0455)$$

e.计算第二轮最终分类器G(x)

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)$$

用sign[G(x)]分类有x=3,4,5三个误分类点

第三轮,i=3

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.409 0.364 0.318 0.485 0.652 0.818 0.712 0.606 0.5

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.591 0.636 0.682 0.515 0.348 0.182 0.288 0.394 0.5

当v=5.5时,x=0,1,2,9分错类,分类误差率最低为e3 = ${0.0455*1+0.0455*1+0.0455*+0.0455*1} =0.182$

b.因此可以得到基本分类器

$$G_3(x) = \begin{cases}-1,&x<5.5\\1,&x>5.5\end{cases}$$

c.计算G3(x)的权值α3

$$α_3 = {1 \over 2} ln {1- e_3 \over e_3} = 0.7514$$

d.更新权值分布为D4(x)

$$D_4=(0.125,0.125,0.125,0.102,0.102,0.102,0.065,0.065,0.065,0.125)$$

e.计算第三轮最终分类器G(x)

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)+0.7514G_3(x)$$

用sign[G(x)]分类有0个误分类点,故最终的分类器是

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)+0.7514G_3(x)$$

集成方法 Boosting原理的更多相关文章

  1. 集成方法 Bagging原理

    1.Bagging方法思路 Bagging独立的.并行的生成多个基本分类器,然后通过投票方式决定分类的类别 Bagging使用了自助法确定每个基本分类器的训练数据集,初始样本集中63.2%的数据会被采 ...

  2. 集成学习之Boosting —— Gradient Boosting原理

    集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...

  3. 常用的模型集成方法介绍:bagging、boosting 、stacking

    本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(baggi ...

  4. 【机器学习实战】第7章 集成方法 ensemble method

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  5. 【机器学习实战】第7章 集成方法(随机森林和 AdaBoost)

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  6. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  7. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  8. 集成学习方法Boosting和Bagging

    集成学习是通过构架并结合多个学习器来处理学习任务的一种思想, 目前主要分为两大类:Boosting和Bagging. 对于任意一种集成方法, 我们都希望学习出来的基分类器具有较高的准确性和多样性, 基 ...

  9. SpringBoot集成MyBatis底层原理及简易实现

    MyBatis是可以说是目前最主流的Spring持久层框架了,本文主要探讨SpringBoot集成MyBatis的底层原理.完整代码可移步Github. 如何使用MyBatis 一般情况下,我们在Sp ...

随机推荐

  1. HTML5仿手机微信聊天界面

    HTML5仿手机微信聊天界面 这篇文章主要为大家详细介绍了HTML5仿手机微信聊天界面的关键代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下     给大家带来的是HTML5仿手机微信聊天界面, ...

  2. 可视化工具Grafana:简介及安装

    随着业务的越发复杂,对软件系统的要求越来越高,这意味着我们需要随时掌控系统的运行情况.因此,对系统的实时监控以及可视化展示,就成了基础架构的必须能力. 这篇博客,介绍下开源的可视化套件grafana的 ...

  3. sanic set up

    (venv) MacBook-Pro:bin shihw$ pip3 install sanicCollecting sanic Downloading https://files.pythonhos ...

  4. 使用Kernel NetEm和tc模拟复杂网络环境

    关键词:netem(Network Emulator).tc(Traffic Control). 大部分局域网环境良好,但是产品实际网络环境可能千差万别,为了对产品进行各种情况测试就需要模拟网络环境. ...

  5. 终于有人把“TCC分布式事务”实现原理讲明白了!

    之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一 ...

  6. 系统IO

    系统IO:Linux系统提供给应用程序操作文件的接口 Everything is a file  ,in  Unix 在Unix/Linux下,万物皆文件 打开文件函数原型: #include< ...

  7. 国内可访问的稳定docker镜像

    可参考:https://yeasy.gitbooks.io/docker_practice/content/install/mirror.html 但在debian 9上进行相应配置后,在pull镜像 ...

  8. Web并发页面访问量统计实现

    Web并发页面访问量统计实现 - huangshulang1234的博客 - CSDN博客https://blog.csdn.net/huangshulang1234/article/details/ ...

  9. 其它综合-CentOS7 忘记root密码

    CentOS7 忘记root密码 长时间不用的 CentOS 机器再次开机的时候忽然忘记了密码,总不能就重装一台吧,还有好多服务在机器上,于是决定重置root的密码. 如果是已经开启的机器,需要进行关 ...

  10. python爬取中国天气网站数据并对其进行数据可视化

    网址:http://www.weather.com.cn/textFC/hb.shtml 解析:BeautifulSoup4 爬取所有城市的最低天气   对爬取的数据进行可视化处理 按温度对城市进行排 ...