1.Boosting方法思路

Boosting方法通过将一系列的基本分类器组合,生成更好的强学习器

基本分类器是通过迭代生成的,每一轮的迭代,会使误分类点的权重增大

Boosting方法常用的算法是AdaBoost(Adaptive Boosting)、GBRT (Gradient Tree Boosting)

2.AdaBoost算法

算法要解决的2个问题(分类)

  • 如何改变训练集的权值

  提高前一轮分类错误样本的权值,降低分类正确样本的权值

  • 如何将基本分类器组合成强学习器

  加权多数表决法,通过投票来决定最后的结果,分类误差率小的基本分类器在投票中起较大作用,分类误差率大的基本分类器在投票中起较小作用。

算法思想

输入:训练集D;弱学习算法;训练轮数T

1)初始化权值分布D1(x) = 1/n

2)(for i=1;i<T;i++){

  a.计算不同基本分类器G的分类误差率e,找到最小分类误差率ei

 

  b.根据最小分类误差率ei,选择最小的基本分类器Gi

  c.计算Gi的权值αi;

  

  d.更新权值分布为Di+1(x);

 

  e.计算最终分类器G(x),并用G(x)分类,没有误分类点退出循环

}

例子

例子来源于李航《统计学习方法》P140,数据表如下

x 0 1 2 3 4 5 6 7 8 9
y 1 1 1 -1 -1 -1 1 1 1 -1

首先是算法的输入,训练集D就是上边的表格,弱学习算法采用决策树桩(选一个数v,比v大的分一类,比v小的分一类),训练轮数输入5

1)初始化权值分布$D_1(x) =({1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10})$

2)第一轮,i=1

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

当v取0.5时,x=1,2,6,7,8,9分错类,故e = ${0.1*1+0.1*1+0.1*1+0.1*1+0.1*1} = 0.5$

同理可求v取1.5,2.5,…,8.5时的分类误差率,不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.5 0.4 0.3 0.4 0.5 0.6 0.5 0.4 0.3

当v=2.5时,x=6,7,8分错类,分类误差率最低为e1 = ${0.1*1+0.1*1+0.1*1} = 0.3$

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7

b.因此可以得到基本分类器

$$G_1(x) = \begin{cases}1,&x<2.5\\-1,&x>2.5\end{cases}$$

c.计算G1(x)的权值α1

$$α_1 = {1 \over 2} ln {1- e_1 \over e_1} = 0.4236$$

d.更新权值分布为D2(x)
$$Z_1=0.1*e^{-0.4236*1*1}+0.1*e^{-0.4236*1*1}+...+0.1*e^{-0.4236*-1*-1}=0.7e^{-0.4236}+0.3e^{0.4236}$$

$$w_{21}={0.1e^{-0.4236} \over 0.7e^{-0.4236}+0.3e^{0.4236}} = 0.07143$$

同理可以计算其他w2j,最后得到更新后的权值分布D2,这个D2留着在下一轮用

$$D_2=(0.07143,0.07143,0.07143,0.07143,0.07143,0.07143,0.16667,0.16667,0.16667,0.07143)$$

e.计算第一轮最终分类器G(x)

$$G(x) =0.4236G_1(x) $$

用sign[G(x)]分类有x=6,7,8三个误分类点

第二轮,i=2

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.643 0.571 0.5 0.571 0.643 0.714 0.548 0.381 0.214

当v=8.5时,x=4,5,6分错类,分类误差率最低为e2 = ${0.07143*1+0.07143*1+0.07143*1} =0.2143$

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.357 0.429 0.5 0.429 0.357 0.286 0.452 0.619 0.786

b.因此可以得到基本分类器

$$G_2(x) = \begin{cases}1,&x<8.5\\-1,&x>8.5\end{cases}$$

c.计算G2(x)的权值α2

$$α_2 = {1 \over 2} ln {1- e_2 \over e_2} = 0.6496$$

d.更新权值分布为D3(x)

$$D_3=(0.0455,0.0455,0.0455,0.1667,0.1667,0.1667,0.1060,0.1060,0.1060,0.0455)$$

e.计算第二轮最终分类器G(x)

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)$$

用sign[G(x)]分类有x=3,4,5三个误分类点

第三轮,i=3

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.409 0.364 0.318 0.485 0.652 0.818 0.712 0.606 0.5

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.591 0.636 0.682 0.515 0.348 0.182 0.288 0.394 0.5

当v=5.5时,x=0,1,2,9分错类,分类误差率最低为e3 = ${0.0455*1+0.0455*1+0.0455*+0.0455*1} =0.182$

b.因此可以得到基本分类器

$$G_3(x) = \begin{cases}-1,&x<5.5\\1,&x>5.5\end{cases}$$

c.计算G3(x)的权值α3

$$α_3 = {1 \over 2} ln {1- e_3 \over e_3} = 0.7514$$

d.更新权值分布为D4(x)

$$D_4=(0.125,0.125,0.125,0.102,0.102,0.102,0.065,0.065,0.065,0.125)$$

e.计算第三轮最终分类器G(x)

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)+0.7514G_3(x)$$

用sign[G(x)]分类有0个误分类点,故最终的分类器是

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)+0.7514G_3(x)$$

集成方法 Boosting原理的更多相关文章

  1. 集成方法 Bagging原理

    1.Bagging方法思路 Bagging独立的.并行的生成多个基本分类器,然后通过投票方式决定分类的类别 Bagging使用了自助法确定每个基本分类器的训练数据集,初始样本集中63.2%的数据会被采 ...

  2. 集成学习之Boosting —— Gradient Boosting原理

    集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...

  3. 常用的模型集成方法介绍:bagging、boosting 、stacking

    本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(baggi ...

  4. 【机器学习实战】第7章 集成方法 ensemble method

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  5. 【机器学习实战】第7章 集成方法(随机森林和 AdaBoost)

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  6. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  7. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  8. 集成学习方法Boosting和Bagging

    集成学习是通过构架并结合多个学习器来处理学习任务的一种思想, 目前主要分为两大类:Boosting和Bagging. 对于任意一种集成方法, 我们都希望学习出来的基分类器具有较高的准确性和多样性, 基 ...

  9. SpringBoot集成MyBatis底层原理及简易实现

    MyBatis是可以说是目前最主流的Spring持久层框架了,本文主要探讨SpringBoot集成MyBatis的底层原理.完整代码可移步Github. 如何使用MyBatis 一般情况下,我们在Sp ...

随机推荐

  1. 10分钟,AppCan帮你搞定跨平台开发APP问题!

    跨平台开发APP时,开发者总会遇到一些问题,如打包失败等等,尤其对于iOS来说,由于它的限制性会导致一些状况发生(如证书上传问题等),小编总结了几个AppCan在线IOS打包失败常见的情况及排查技巧, ...

  2. Mango 基础知识

    1 mongdb和python交互的模块 pymongo 提供了mongdb和python交互的所有方法 安装方式: pip install pymongo 2 使用pymongo 1. 导入pymo ...

  3. vuex的使用步骤

    第一步: 安装vuex:npm install vuex --save 第二步:在src下创建文件夹store及文件index.js import Vue from 'vue'; import Vue ...

  4. 图表插件Highcharts的动态化赋值,实现图表数据的动态化设置显示

    在很早之前就介绍过图表插件Highcharts的使用了,在2014年的随笔<基于MVC4+EasyUI的Web开发框架经验总结(4)--使用图表控件Highcharts>,这里基本上都介绍 ...

  5. Sublime 禁止自动升级

    打开SUblime   Prefreences  找到"设置-用户" 添加 "update_check":false, 即可禁用默认升级 此时完整如下 { &q ...

  6. python 通过 http、dns、icmp判断网络状态

    #http使用requests发包bs4解析,dns.icmp 使用scapy发包import time import threading import requests,bs4 from scapy ...

  7. hadoop用户写入文件权限不够的问题

    问题: 普通用户echo写入文件,提示权限不够. 解决方式: sudo tee test.txt <<< "要插入内容"

  8. Kubernetes — 控制器

    Pod 这个看似复杂的 API 对象,实际上就是对容器的进一步抽象和封装而已. 说得更形象些,“容器”镜像虽然好用,但是容器这样一个“沙盒”的概念,对于描述应用来说, 还是太过简单了. 这就好比,集装 ...

  9. 前后端不分离的springboot项目问题:页面框架问题

    前言:最近自己想搞一个以springboot开发的web项目,由于页面布局问题,在前期开发的时候没有太注意,每天写一点现在开发到一半出现了一个大问题. 1.先说说整个网站框架搭建问题:(整个项目前后端 ...

  10. ReSharper 2017破解详细方法:

    VS里面,打开ReSharper的注册窗口:ReSharper ——> Help ——> License Information... Use License Server,右侧加号,点击 ...