[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1. 一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }u}&=\rho Fu; \eea \eeex$$ 或 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x}+\cfrac{1}{\rho }\cfrac{\p p}{\p x}&=F,\\ \cfrac{\p S}{\p t}+u\cfrac{\p S}{\p x}&=0; \eea \eeex$$ 再或 $$\beex \bea A(t,x,U)\cfrac{\p U}{\p t}+B(t,x,U)\cfrac{\p U}{\p x} =F(t,x,U), \eea \eeex$$ 其中 $$\bex A(t,x,U)=I,\quad B=\sex{\ba{ccc} u&\rho&0\\ \cfrac{c^2}{\rho}&u&\cfrac{p_S}{\rho}\\ 0&0&u \ea},\quad F=\sex{\ba{c}0\\F\\0 \ea}. \eex$$
2. 一阶拟线性双曲组
(1) 对一阶拟线性 PDE $$\bee\label{2_1_sq} A(t,x,U)\cfrac{\p U}{\p t}+B(t,x,U)\cfrac{\p U}{\p x} =F(t,x,U), \eee$$ 若对 $\forall\ (t,x,U)$, 特征方程 $$\bex |B-\lm A|=0 \eex$$ 有 $n$ 个实根 $$\bex \lm_1(t,x,U),\cdots,\lm_n(t,x,U), \eex$$ 且相应的广义左特征向量 $$\bex \eta^i:\ \eta^iB=\lm_i\eta^iA \eex$$ 构成完全组 $(|\eta^i_j|\neq 0)$. 则称 \eqref{2_1_sq} 为双曲型方程组.
(2) 若 $$\bex \lm_1(t,x,U)<\lm_2(t,x,U)<\cdots<\lm_n(t,x,U), \eex$$ 则称 \eqref{2_1_sq} 为严格双曲型方程组.
(3) 若曲线 $x=x(t)$ 满足 $$\bex \sev{B-\cfrac{\rd x}{\rd t}A}=0, \eex$$ 则称其为特征曲线.
(4) 例: 在非真空区域, 一维理想流体力学方程组为严格双曲型.
3. 均熵流 ($S=\const$): $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{c^2}{\rho}\cfrac{\p \rho}{\p x}&=F. \eea \eeex$$
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组的更多相关文章
- [物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfr ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- 先vue-cli,再nuxt试试路由
https://segmentfault.com/a/1190000007933349
- Codeforces Round 1153(div. 2)
这场奇差.ABCD四题.179名. 但是E在现场有213个人做出. 描述一下我在35分钟做完D后的心路历程. 首先看到这道E,第一下想到的是把所有的横向和竖向的整列(行)求出相连的个数. 然后想如何能 ...
- 《通过C#学Proto.Actor模型》之Spawning
Props是配置Actor和实例化Actor,那实例化后,就应该访问了,Props.Actor提供了Actor.Spawn(),Actor.SpawnPrefix(),Actor.SpawnNamed ...
- 横线和文字一排,文字居中显示vertical-align: middle;
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- ssh远程 和 上传/下载工具
常用的ssh远程工具有: putty : 软件体积小,开源免费. xshell : 功能强大,亦有免费试用版本 SecureCRT : 功能强大 ftp : 该软件用于上传下载文件 通过ssh ...
- (转)JMeter学习逻辑控制器
JMeter中的Logic Controller用于为Test Plan中的节点添加逻辑控制器. JMeter中的Logic Controller分为两类:一类用来控制Test Plan执行过程中节点 ...
- sql 书写 规范 优化
规范 做注解 便于修改和优化 规范 <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE map ...
- SharedPreferences类的使用
SharedPreferences,用xml文件保存用户的偏好设置,是一个轻量级的存储类. 效果图: 代码: activity_main <?xml version="1.0" ...
- Python——Django-urls.py的作用
一.urls.py的作用是保存路径和函数的对应关系 二.函数返回指定内容 from django.urls import path #引用HTTP协议的代码 from django.shortcuts ...
- SpringMVC DispatcherServlet在配置Rest url-pattern的一点技巧
SpringMVC的Controller中已经有了@RequestMapping(value = "detail.do", method = RequestMethod.GET)的 ...