简单的线性回归预测房价

#!/usr/bin/env python
# encoding: utf-8 """
@version:
@author: --*--.
@file: LinearRegression.py
@time: 2018/11/1 11:05
@desc:
""" # Required Packages
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model def get_data():
"""
生成随机的线性数据集
:return:
"""
x = 100 * np.random.rand(100, 1).astype(np.float32)
y = 2 * x + 10 # 直线
# y = 7 * x ** 5 + 3 * x + 10 # 曲线
y += 50 * np.random.rand(100, 1).astype(np.float32) return x, y # Function for Fitting our data to Linear model
def linear_model_main(X_parameters, Y_parameters, predict_value):
# Create linear regression object
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters,sample_weight=None) # 权重
predict_outcome = regr.predict(predict_value) predictions = {}
predictions['intercept'] = regr.intercept_
predictions['coefficient'] = regr.coef_
predictions['predicted_value'] = predict_outcome
return predictions # Function to show the resutls of linear fit model
def show_linear_line(X_parameters, Y_parameters, predictvalue):
# Create linear regression object
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters) fig = plt.figure()
ax1 = fig.add_subplot(111)
# 设置标题
ax1.set_title('Housing Forecast') ax1.scatter(X_parameters, Y_parameters, color='blue', marker='*')
ax1.plot(X_parameters, regr.predict(X_parameters), color='c', linewidth=1) # 画点
ax1.scatter(predictvalue, regr.predict(predictvalue), color='red') # 画水平虚线
plt.axvline(x=predictvalue, ls='dotted', color='y')
plt.axhline(y=regr.predict(predictvalue), ls='dotted', color='y') plt.xlabel('x:area')
plt.ylabel('y:price') plt.show() if __name__ == "__main__":
X, Y = get_data()
predictvalue = 90 # 面积
# 新版必须2维哦
predictvalue = np.array(predictvalue,dtype=np.int32).reshape(1, -1) result = linear_model_main(X, Y, predictvalue) print("截距-Intercept value ", result['intercept'])
print("回归系数-coefficient", result['coefficient'])
print("y-Predicted value: ", result['predicted_value'])
print("面积 %d 的价格预测为 %d" % (predictvalue, result['predicted_value'])) show_linear_line(X, Y, predictvalue)

输出结果为:

/usr/bin/python3.5 /home/think-hxr/PycharmProjects/MachineLearningAlgorithms/LinearRegression.py
Intercept value [ 38.77058411]
coefficient [[ 1.92119944]]
Predicted value: [[ 211.67853379]]
面积 90 的价格预测为 211

画图:

python 10大算法之一 LinearRegression 笔记的更多相关文章

  1. python 10大算法之二 LogisticRegression 笔记

    使用的包 import matplotlib.pyplot as plt import pandas as pd import numpy as npfrom sklearn import datas ...

  2. 数据挖掘10大算法(1)——PageRank

    1. 前言 这系列的文章主要讲述2006年评出的数据挖掘10大算法(见图1).文章的重点将偏向于算法的来源以及算法的主要思想,不涉及具体的实现.如果发现文中有错,希望各位指出来,一起讨论. 图1 来自 ...

  3. 数据结构笔记01:编程面试过程中常见的10大算法(java)

    以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念.由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍.本文将从Java的角度看问题,包含下面的这些概念: ...

  4. 面试10大算法汇总——Java篇

    问题导读 1 字符串和数组 2 链表 3 树 4 图 5 排序 6 递归 vs 迭代 7 动态规划 8 位操作 9 概率问题 10 排列组合 11 其他 -- 寻找规律 英文版 以下从Java角度解释 ...

  5. 面试10大算法汇总+常见题目解答(Java)

    原文地址:http://www.lilongdream.com/2014/04/10/94.html(为转载+整理) 以下从Java的角度总结了面试常见的算法和数据结构:字符串,链表,树,图,排序,递 ...

  6. JavaScript实现10大算法可视化

    参考博客: https://www.cnblogs.com/Unknw/p/6346681.html#4195503 十大经典算法 一张图概括: 名词解释: n:数据规模 k:“桶”的个数 In-pl ...

  7. python聚类算法实战详细笔记 (python3.6+(win10、Linux))

    python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念:     1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库 ...

  8. Python十大经典排序算法

    现在很多的事情都可以用算法来解决,在编程上,算法有着很重要的地位,将算法用函数封装起来,使程序能更好的调用,不需要反复编写. Python十大经典算法: 一.插入排序 1.算法思想 从第二个元素开始和 ...

  9. 人们对Python在企业级开发中的10大误解

    From : 人们对Python在企业级开发中的10大误解 在PayPal的编程文化中存在着大量的语言多元化.除了长期流行的C++和Java,越来越多的团队选择JavaScript和Scala,Bra ...

随机推荐

  1. 用UE4蓝图制作FPS_零基础学虚幻4第二季

    课时1:案例演示 05:12 课时2:工程准备 07:35 (把一个项目从一个工程移动到另一个工程) 1.新建一个空白工程,不包含初学者内容 2.选择我们要复制的工程,按右键,如下图: 复制到新工程的 ...

  2. Scrapy 框架 中间件,信号,定制命令

    中间件 下载器中间件 写中间件 from scrapy.http import HtmlResponse from scrapy.http import Request class Md1(objec ...

  3. opencv 图片位移

    import cv2 as cv import numpy as np # 图片移位 img = cv.imread('../images/moon.jpg', flags=1) # flags=1读 ...

  4. Memcached操作

    标准协议和字段 Memcached的标准协议字段包含以下部分: 键,key,任意字符,最大250字节,不能有空格和换行 标志位,32比特,不能为0 超时时间,单位是秒,0代表永不超时,最长30天,30 ...

  5. Gaussian Process for Regression

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  6. git && gitlab 使用

    安装略过 使用 基于公钥的认证登录,方便对用户进行权限控制 useradd -s /usr/bin/git-shell testgit #创建一个用户 或者直接useradd testgit 然后去/ ...

  7. matlab运行出现“变量似乎会随着迭代次数改变而变化,请预分配内存,以提高运行速度”问题

    这句话大致意思就是: b = 0;for i = 1:3    a(i) = b;end是说变量的长度是变化的,经常在循环里出现,比如上面这个例子,这样会影响计算速度,最好的办法是预先定义a的长度,比 ...

  8. ZooKeeper-客户端命令 zkCli

    执行 bin/zkCli 文件进入客户端 查看帮助 help ZooKeeper -server host:port cmd args stat path [watch] set path data ...

  9. 第九节:深究并行编程Parallel类中的三大方法 (For、ForEach、Invoke)和几大编程模型(SPM、APM、EAP、TAP)

    一. 并行编程 1. 区分串行编程和串行编程 ①. 串行编程:所谓的串行编程就是单线程的作用下,按顺序执行.(典型代表for循环 下面例子从1-100按顺序执行) ②. 并行编程:充分利用多核cpu的 ...

  10. 关于使用python ~取反操作符带出的一系列问题

    晚上的时候,无意之间看到stackoverflow上面的一个编程挑战赛,各路高手各种搞事,看到python的地方突然发现用了很多位运算的符号,但是~符号引起了我和同事的注意. 我们很少在程序中使用这种 ...