0

1.Scrapy 使用 MongoDB

https://doc.scrapy.org/en/latest/topics/item-pipeline.html#write-items-to-mongodb

Write items to MongoDB

In this example we’ll write items to MongoDB using pymongo. MongoDB address and database name are specified in Scrapy settings; MongoDB collection is named after item class.

The main point of this example is to show how to use from_crawler() method and how to clean up the resources properly.:

import pymongo

class MongoPipeline(object):

    collection_name = 'scrapy_items'

    def __init__(self, mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db @classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri=crawler.settings.get('MONGO_URI'),
mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
) def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db] def close_spider(self, spider):
self.client.close() def process_item(self, item, spider):
self.db[self.collection_name].insert_one(dict(item))
return item

2.MongoDB Tutorial

https://api.mongodb.com/python/current/tutorial.html

建立文件夹并运行 MongoDB instance

C:\Users\win7>mongod --dbpath e:\mongodb\db

连接数据库

from pymongo import MongoClient
client = MongoClient()
# client = MongoClient('localhost', 27017)
# client = MongoClient('mongodb://localhost:27017/') db = client.test_database
# db = client['test-database']

collection(等同于table) 插入一个个 document

posts = db.posts
# posts = db['posts'] import datetime
post = {"author": "Mike",
"text": "My first blog post!",
"tags": ["mongodb", "python", "pymongo"],
"date": datetime.datetime.utcnow()} post2 = {"author": "Martin",
"text": "My second blog post!",
"tags": ["mongodb", "python", "pymongo"],
"date": datetime.datetime.utcnow()} post_id = posts.insert_one(post).inserted_id #其实等于 result =posts.insert_one(post) 再 post_id = result.inserted_id, 而 insert_many 则是 inserted_ids 返回一个list
posts.insert_one(post2)

允许插入重复 document

插入之后自动更新了 post3,再次执行 posts.insert_one(post3) 提示 ObjectId 重复

如果插入 post3 之前执行了 post4 = post3.copy() 其实可以插入相同内容

In [689]: post3 = {"author": "Mike",
...: "text": "My first blog post!",
...: "tags": ["mongodb", "python", "pymongo"],
...: "date": datetime.datetime.utcnow()} In [690]: posts.insert_one(post3)
Out[690]: <pymongo.results.InsertOneResult at 0xb803788> In [691]: post3
Out[691]:
{'_id': ObjectId('59e57919fca565500c8e3692'),
'author': 'Mike',
'date': datetime.datetime(2017, 10, 17, 3, 29, 14, 966000),
'tags': ['mongodb', 'python', 'pymongo'],
'text': 'My first blog post!'}

检查确认:

db.collection_names(include_system_collections=False)

posts.count()

import pprint
pprint.pprint(posts.find_one()) #满足限制条件,而且仅限一条。不设条件也即get the first document from the posts collection posts.find_one({"author": "Mike"}) for i in posts.find(): # find() returns a Cursor instance, which allows us to iterate over all matching documents.  返回 Cursor 迭代器,同样支持 posts.find({"author": "Mike"})
print i

c:\program files\anaconda2\lib\site-packages\pymongo\cursor.py

A cursor / iterator over Mongo query results.

In [707]: posts.find()
Out[707]: <pymongo.cursor.Cursor at 0x118a62b0> In [708]: a=posts.find() In [709]: a?
Type: Cursor
String form: <pymongo.cursor.Cursor object at 0x00000000116C6208>
File: c:\program files\anaconda2\lib\site-packages\pymongo\cursor.py
Docstring:
A cursor / iterator over Mongo query results. Init docstring:
Create a new cursor. Should not be called directly by application developers - see
:meth:`~pymongo.collection.Collection.find` instead. .. mongodoc:: cursors

关于编码:

MongoDB stores data in BSON format. BSON strings are UTF-8 encoded
PyMongo decodes each BSON string to a Python unicode string, not a regular str.
存储时 str 不变,unicode 自动编码为 utf-8
输出统一解码为 unicode

post = {"author": "Mike",

{u'_id': ObjectId('...'),
u'author': u'Mike',

Bulk Inserts 批量插入多条文档,每条文档可以不同 field,因此又称 schema-free

>>> new_posts = [{"author": "Mike",
... "text": "Another post!",
... "tags": ["bulk", "insert"],
... "date": datetime.datetime(2009, 11, 12, 11, 14)},
... {"author": "Eliot",
... "title": "MongoDB is fun",
... "text": "and pretty easy too!",
... "date": datetime.datetime(2009, 11, 10, 10, 45)}]
>>> result = posts.insert_many(new_posts)
>>> result.inserted_ids
[ObjectId('...'), ObjectId('...')]

查询数量:

posts.count()
posts.find({"author": "Mike"}).count()

##Range Queries 高级查询

##Indexing 索引

#Aggregation Examples 聚合

https://api.mongodb.com/python/current/examples/aggregation.html

from pymongo import MongoClient
db = MongoClient().aggregation_example
result = db.things.insert_many([{"x": 1, "tags": ["dog", "cat"]},
{"x": 2, "tags": ["cat"]},
{"x": 2, "tags": ["mouse", "cat"]},
{"x": 3, "tags": []}])
result.inserted_ids

OperationFailure: $sort key ordering must be 1 (for ascending) or -1 (for descending)

from bson.son import SON
pipeline = [
{"$unwind": "$tags"}, # tags 字段是一个 array,松绑
{"$group": {"_id": "$tags", "count": {"$sum": 1}}}, #按照 tag 分组,即为唯一值
{"$sort": SON([("count", -1), ("_id", 1)])} #先按 count 降序,再按 _id 升序
]

SON 有序字典

In [773]: SON?
Init signature: SON(cls, *args, **kwargs)
Docstring:
SON data. A subclass of dict that maintains ordering of keys and provides a
few extra niceties for dealing with SON. SON objects can be
converted to and from BSON.
In [779]: db.things.aggregate(pipeline)
Out[779]: <pymongo.command_cursor.CommandCursor at 0x118a6cc0> In [780]: list(db.things.aggregate(pipeline)) #list(迭代器)
Out[780]:
[{u'_id': u'cat', u'count': 3},
{u'_id': u'dog', u'count': 1},
{u'_id': u'mouse', u'count': 1}]

Map/Reduce

Copying a Database 复制备份数据库

https://api.mongodb.com/python/current/examples/copydb.html#copying-a-database

from pymongo import MongoClient
client = MongoClient() client.admin.command('copydb',
fromdb='test_database',
todb='test_database_bak')
#{u'ok': 1.0}

跨服务器以及密码认证,见原文。

#Bulk Write Operations 批处理 InsertOne, DeleteMany, ReplaceOne, UpdateOne

Bulk Insert

https://api.mongodb.com/python/current/examples/bulk.html

import pymongo
db = pymongo.MongoClient().bulk_example
db.test.insert_many([{'i': i} for i in range(10000)]).inserted_ids db.test.count()

Mixed Bulk Write Operations

  • 1/2 Ordered Bulk Write Operations

Ordered bulk write operations are batched and sent to the server in the order provided for serial execution. 按照顺序执行操作

from pprint import pprint
from pymongo import InsertOne, DeleteMany, ReplaceOne, UpdateOne #类
result = db.test.bulk_write([ #根据帮助:也可写成 requests = [InsertOne({'y': 1}),]
DeleteMany({}), #类实例
InsertOne({'_id': 1}),
InsertOne({'_id': 2}),
InsertOne({'_id': 3}),
UpdateOne({'_id': 1}, {'$set': {'foo': 'bar'}}),
UpdateOne({'_id': 4}, {'$inc': {'j': 1}}, upsert=True), #没有则插入
ReplaceOne({'j': 1}, {'j': 2})]) #也可满足 {'j': 2}, 替换为{'i': 5}
pprint(result.bulk_api_result)

#{'nInserted': 3,
#'nMatched': 2,
#'nModified': 2,
#'nRemoved': 4,
#'nUpserted': 1,
#'upserted': [{u'_id': 4, u'index': 5}],
#'writeConcernErrors': [],
#'writeErrors': []}

for i in db.test.find():
print i #{u'_id': 1, u'foo': u'bar'}
#{u'_id': 2}
#{u'_id': 3}
#{u'_id': 4, u'j': 2}

清空col

In [844]: r=db.test.delete_many({})
In [845]: r.deleted_count
Out[845]: 4

删除col

In [853]: db.name
Out[853]: u'bulk_example' In [855]: db.collection_names()
Out[855]: [u'test'] In [860]: db.test.drop() #无返回,不报错,建议用下面的 In [861]: db.drop_collection('test')
Out[861]:
{u'code': 26,
u'codeName': u'NamespaceNotFound',
u'errmsg': u'ns not found',
u'ok': 0.0}

The first write failure that occurs (e.g. duplicate key error) aborts the remaining operations, and PyMongo raises BulkWriteError.   出错则中止后续操作。

>>> from pymongo import InsertOne, DeleteOne, ReplaceOne
>>> from pymongo.errors import BulkWriteError
>>> requests = [
... ReplaceOne({'j': 2}, {'i': 5}),
... InsertOne({'_id': 4}), # Violates the unique key constraint on _id.
... DeleteOne({'i': 5})]
>>> try:
... db.test.bulk_write(requests)
... except BulkWriteError as bwe:
... pprint(bwe.details)
...
{'nInserted': 0,
'nMatched': 1,
'nModified': 1,
'nRemoved': 0,
'nUpserted': 0,
'upserted': [],
'writeConcernErrors': [],
'writeErrors': [{u'code': 11000,
u'errmsg': u'...E11000...duplicate key error...',
u'index': 1,
u'op': {'_id': 4}}]}
  • 2/2 Unordered Bulk Write Operations 并行无序操作,最后报告出错的部分操作

db.test.bulk_write(requests, ordered=False)

#Datetimes and Timezones

https://api.mongodb.com/python/current/examples/datetimes.html

避免使用本地时间 datetime.datetime.now()

import datetime

result = db.objects.insert_one({"last_modified": datetime.datetime.utcnow()})

关于时区读写,详见原文

#GridFS Example 存储二进制对象,比如文件

This example shows how to use gridfs to store large binary objects (e.g. files) in MongoDB.

from pymongo import MongoClient
import gridfs db = MongoClient().gridfs_example
fs = gridfs.GridFS(db) # collection 表

读写doc: str,unicode,file-like

In [883]: fs.get(fs.put('hello world')).read()
Out[883]: 'hello world' In [885]: fs.get(fs.put(u'hello world')).read()
TypeError: must specify an encoding for file in order to write unicode In [886]: fs.get(fs.put(u'hello world',encoding='utf-8')).read() # 写入 unicode 必须传入 encoding,没有默认
Out[886]: 'hello world' In [888]: fs.get(fs.put(open('abc.txt'),filename='abc',filetype='txt')).read() # file-like object (an object with a read() method),自定义属性为可选 filename ,filetype
Out[888]: 'def'

相比第一个doc,第二个多出 encoding 字段,第三个多出 filenname 和 filetype

这里将 doc 看成 file 更容易理解

In [896]: for doc in fs.find():
...: print doc.upload_date
...:
2017-10-18 03:28:04
2017-10-18 03:28:42.036000
2017-10-18 03:29:01.740000

print dir(doc)

'aliases', 'chunk_size', 'close', 'content_type', 'filename', 'length', 'md5', 'metadata', 'name', 'read', 'readchunk', 'readline', 'seek', 'tell', 'upload_date'

In [899]: doc?
Type: GridOut
String form: <gridfs.grid_file.GridOut object at 0x000000000AB2B8D0>
File: c:\program files\anaconda2\lib\site-packages\gridfs\grid_file.py
Docstring:
Class to read data out of GridFS. Init docstring:
Read a file from GridFS

MongoDB 及 scrapy 应用的更多相关文章

  1. day96_11_28 mongoDB与scrapy框架

    一.mongodb mongodb是一个面向文档的数据库,而不是关系型数据库.不采用关系型是为了获得更好的扩展性. 它与mysql的区别在于它没有表连接,但是可以通过其他办法实现. 安装数据库. 上官 ...

  2. Python下用Scrapy和MongoDB构建爬虫系统(1)

    本文由 伯乐在线 - 木羊 翻译,xianhu 校稿.未经许可,禁止转载!英文出处:realpython.com.欢迎加入翻译小组. 这篇文章将根据真实的兼职需求编写一个爬虫,用户想要一个Python ...

  3. 放养的小爬虫--豆瓣电影入门级爬虫(mongodb使用教程~)

    放养的小爬虫--豆瓣电影入门级爬虫(mongodb使用教程~) 笔者声明:只用于学习交流,不用于其他途径.源代码已上传github.githu地址:https://github.com/Erma-Wa ...

  4. scrapy wiki资料汇总

    See also: Scrapy homepage, Official documentation, Scrapy snippets on Snipplr Getting started If you ...

  5. python爬虫框架scrapy 豆瓣实战

    Scrapy 官方介绍是 An open source and collaborative framework for extracting the data you need from websit ...

  6. 爬虫框架Scrapy 的使用

    一.官网链接 https://docs.scrapy.org/en/latest/topics/architecture.html 二.Scrapy 需要安装的包 #Windows平台 # pip3 ...

  7. CentOS 6 安装python3.6

    参考博客:https://www.cnblogs.com/xiaodangshan/p/7197563.html 安装过程比较简单,需要注意,安装之后,为了不影响系统自带的python2.6版本,需要 ...

  8. scrapy--cnblogs

    之前一直在学习关于滑块验证码的爬虫知识,最接近的当属于模拟人的行为进行鼠标移动,登录页面之后在获取了,由于一直找不到滑块验证码的原图,无法通过openCV获取当前滑块所需要移动的距离. 1.机智如我开 ...

  9. <读书笔记>如何入门爬虫?

    大部分爬虫框架都是 发送请求 获得页面 解析页面 下载内容 存储内容 定个宏伟目标 淘宝1000页 知乎 豆瓣 ... python基础 list.dict:序列化爬取的内容 切片:分割爬取内容,获取 ...

随机推荐

  1. C++/cli中swtich处理命令行接收到的关键字

    QQ群友中有人提出这样一个问题: Swtich接受的是整形或枚举类型, 关键字多数是一个字符, 将string转换成char就应该可以, 所以我试着写了一下代码, 直接提取string的第一个字符, ...

  2. Codeforces 1077D Cutting Out(二分答案)

    题目链接:Cutting Out 题意:给定一个n长度的数字序列s,要求得到一个k长度的数字序列t,每次从s序列中删掉完整的序列t,求出能删次数最多的那个数字序列t. 题解:数字序列s先转换成不重复的 ...

  3. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  4. js jquery 判断元素是否在数组内(转)

    一,js方法 var arr = ["a", "b", "c"]; // js arr.indexOf("c") var ...

  5. 关于vue的域名重定向和404

    //创建路由对象并配置路由规则 let router = new VueRouter({ routes:[ {path:'/',redirect:{name:"index"}}, ...

  6. CMDB服务器管理系统【s5day91】:资产采集相关问题

    资产采集唯一标识和允许临时修改主机名 class AgentClient(BaseClient): def exec(self): obj = PluginManager() server_dict ...

  7. HDU 5984(求木棒切割期望 数学)

    题意是给定一长为 L 的木棒,每次任意切去一部分直到剩余部分的长度不超过 D,求切割次数的期望. 若木棒初始长度不超过 D,则期望是 0.000000: 设切割长度为 X 的木棒切割次数的期望是 F( ...

  8. MongoDB实战性能优化

    1. 性能优化分类 mongodb性能优化分为软件层面和操作系统层面. 软件层面,一般通过修改mongodb软件配置参数来达到,这个需要非常熟悉mongodb里面的各种配置参数: 而操作系统层面,相对 ...

  9. [物理学与PDEs]第2章习题9 粘性流体动能的衰减

    设 $\Omega\subset {\bf R}^3$ 为有界域, ${\bf u}$ 为 Navier-Stokes 方程组 (3. 4)-(3. 5) 满足边界条件 (3. 7) 的解, 其中体积 ...

  10. keras系列︱Sequential与Model模型、keras基本结构功能(一)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...