An ingest pattern that we commonly see being adopted at Cloudera customers is Apache Spark Streaming applications which read data from Kafka. Streaming data continuously from Kafka has many benefits such as having the capability to gather insights faster. However, users must take into consideration management of Kafka offsets in order to recover their streaming application from failures. In this post, we will provide an overview of Offset Management and following topics.

  • Storing offsets in external data stores

    • Checkpoints
    • HBase
    • ZooKeeper
    • Kafka
  • Not managing offsets

Overview of Offset Management

Spark Streaming integration with Kafka allows users to read messages from a single Kafka topic or multiple Kafka topics. A Kafka topic receives messages across a distributed set of partitions where they are stored. Each partition maintains the messages it has received in a sequential order where they are identified by an offset, also known as a position. Developers can take advantage of using offsets in their application to control the position of where their Spark Streaming job reads from, but it does require offset management.

Managing offsets is most beneficial to achieve data continuity over the lifecycle of the stream process. For example, upon shutting down the stream application or an unexpected failure, offset ranges will be lost unless persisted in a non-volatile data store. Further, without offsets of the partitions being read, the Spark Streaming job will not be able to continue processing data from where it had last left off.

[figure 1 – high-level flow for managing offsets]

The above diagram depicts the general flow for managing offsets in your Spark Streaming application. Offsets can be managed in several ways, but generally follow this common sequence of steps.

  1. Upon initialization of the Direct DStream, a map of offsets for each topic’s partition can be specified of where the Direct DStream should start reading from for each partition.
    1. The offsets specified are in the same location that step 4 below writes to.
  2. The batch of messages can then be read and processed.
  3. After processing, the results can be stored as well as offsets.
    1. The dotted line around store results and commit offsets actions simply highlights a sequence of steps where users may want to further review if a special scenario of stricter delivery semantics are required. This may include review of idempotent operations or storing the results with their offsets in an atomic operation.
  4. Lastly, any external durable data store such as HBase, Kafka, HDFS, and ZooKeeper are used to keep track of which messages have already been processed.

Different scenarios can be incorporated into the above steps depending upon business requirements. Spark’s programmatic flexibility allows users fine-grained control to store offsets before or after periodic phases of processing. Consider an application where the following is occurring: a Spark Streaming application is reading messages from Kafka, performing a lookup against HBase data to enrich or transform the messages and then posting the enriched messages to another topic or separate system (e.g. other messaging system, back to HBase, Solr, DBMS, etc.). In this case, we only consider the messages as processed when they are successfully posted to the secondary system.

Storing Offsets Externally

In this section, we explore different options for persisting offsets externally in a durable data store.

For the approaches mentioned in this section, if using the spark-streaming-kafka-0-10 library, we recommend users to set enable.auto.commit to false. This configuration is only applicable to this version, and by setting enable.auto.commit to true means that offsets are committed automatically with a frequency controlled by the config auto.commit.interval.ms. In Spark Streaming, setting this to true commits the offsets to Kafka automatically when messages are read from Kafka which doesn’t necessarily mean that Spark has finished processing those messages. To enable precise control for committing offsets, set Kafka parameter enable.auto.commit to false and follow one of the options below.

Spark Streaming checkpoints

Enabling Spark Streaming’s checkpoint is the simplest method for storing offsets, as it is readily available within Spark’s framework. Streaming checkpoints are purposely designed to save the state of the application, in our case to HDFS, so that it can be recovered upon failure.

Checkpointing the Kafka Stream will cause the offset ranges to be stored in the checkpoint. If there is a failure, the Spark Streaming application can begin reading the messages from the checkpoint offset ranges. However, Spark Streaming checkpoints are not recoverable across applications or Spark upgrades and hence not very reliable, especially if you are using this mechanism for a critical production application. We do not recommend managing offsets via Spark checkpoints.

Storing Offsets in HBase

HBase can be used as an external data store to preserve offset ranges in a reliable fashion. By storing offset ranges externally, it allows Spark Streaming applications the ability to restart and replay messages from any point in time as long as the messages are still alive in Kafka.

With HBase’s generic design, the application is able to leverage the row key and column structure to handle storing offset ranges across multiple Spark Streaming applications and Kafka topics within the same table. In this example, each entry written to the table can be uniquely distinguished with a row key containing the topic name, consumer group id, and the Spark Streaming batchTime.milliSeconds. Although batchTime.milliSeconds isn’t required, it does provide insight to historical batches and the offsets which were processed. New records will accumulate in the table which we have configured in the below design to automatically expire after 30 days. Below is the HBase table DDL and structure.

DDL

create 'stream_kafka_offsets', {NAME=>'offsets', TTL=>}

RowKey Layout

row:              <TOPIC_NAME>:<GROUP_ID>:<EPOCH_BATCHTIME_MS>
column family: offsets
qualifier: <PARTITION_ID>
value: <OFFSET_ID>

For each batch of messages, saveOffsets() function is used to persist last read offsets for a given kafka topic in HBase.

/*
Save offsets for each batch into HBase
*/
def saveOffsets(TOPIC_NAME:String,GROUP_ID:String,offsetRanges:Array[OffsetRange],
hbaseTableName:String,batchTime: org.apache.spark.streaming.Time) ={
val hbaseConf = HBaseConfiguration.create()
hbaseConf.addResource("src/main/resources/hbase-site.xml")
val conn = ConnectionFactory.createConnection(hbaseConf)
val table = conn.getTable(TableName.valueOf(hbaseTableName))
val rowKey = TOPIC_NAME + ":" + GROUP_ID + ":" +String.valueOf(batchTime.milliseconds)
val put = new Put(rowKey.getBytes)
for(offset <- offsetRanges){
put.addColumn(Bytes.toBytes("offsets"),Bytes.toBytes(offset.partition.toString),
Bytes.toBytes(offset.untilOffset.toString))
}
table.put(put)
conn.close()
}

At the beginning of the streaming job, getLastCommittedOffsets() function is used to read the kafka topic offsets from HBase that were last processed when Spark Streaming application stopped. Function handles the following common scenarios while returning kafka topic partition offsets.

Case 1: Streaming job is started for the first time. Function queries the zookeeper to find the number of partitions in a given topic. It then returns ‘0’ as the offset for all the topic partitions.

Case 2: Long running streaming job had been stopped and new partitions are added to a kafka topic. Function queries the zookeeper to find the current number of partitions in a given topic. For all the old topic partitions, offsets are set to the latest offsets found in HBase. For all the new topic partitions, it returns ‘0’ as the offset.

Case 3: Long running streaming job had been stopped and there are no changes to the topic partitions. In this case, the latest offsets found in HBase are returned as offsets for each topic partition.

When new partitions are added to a topic once the streaming application is started, only messages from the topic partitions that were detected during the start of the streaming application are ingested. For streaming job to read the messages from newly added topic partitions, job has to be restarted.

/* Returns last committed offsets for all the partitions of a given topic from HBase in
following cases.
*/ def getLastCommittedOffsets(TOPIC_NAME:String,GROUP_ID:String,hbaseTableName:String,
zkQuorum:String,zkRootDir:String,sessionTimeout:Int,connectionTimeOut:Int):Map[TopicPartition,Long] ={ val hbaseConf = HBaseConfiguration.create()
val zkUrl = zkQuorum+"/"+zkRootDir
val zkClientAndConnection = ZkUtils.createZkClientAndConnection(zkUrl,
sessionTimeout,connectionTimeOut)
val zkUtils = new ZkUtils(zkClientAndConnection._1, zkClientAndConnection._2,false)
val zKNumberOfPartitionsForTopic = zkUtils.getPartitionsForTopics(Seq(TOPIC_NAME
)).get(TOPIC_NAME).toList.head.size
zkClientAndConnection._1.close()
zkClientAndConnection._2.close() //Connect to HBase to retrieve last committed offsets
val conn = ConnectionFactory.createConnection(hbaseConf)
val table = conn.getTable(TableName.valueOf(hbaseTableName))
val startRow = TOPIC_NAME + ":" + GROUP_ID + ":" +
String.valueOf(System.currentTimeMillis())
val stopRow = TOPIC_NAME + ":" + GROUP_ID + ":" +
val scan = new Scan()
val scanner = table.getScanner(scan.setStartRow(startRow.getBytes).setStopRow(
stopRow.getBytes).setReversed(true))
val result = scanner.next()
var hbaseNumberOfPartitionsForTopic = //Set the number of partitions discovered for a topic in HBase to 0
if (result != null){
//If the result from hbase scanner is not null, set number of partitions from hbase
to the number of cells
hbaseNumberOfPartitionsForTopic = result.listCells().size()
} val fromOffsets = collection.mutable.Map[TopicPartition,Long]() if(hbaseNumberOfPartitionsForTopic == ){
// initialize fromOffsets to beginning
for (partition <- to zKNumberOfPartitionsForTopic-){
fromOffsets += (new TopicPartition(TOPIC_NAME,partition) -> )
}
} else if(zKNumberOfPartitionsForTopic > hbaseNumberOfPartitionsForTopic){
// handle scenario where new partitions have been added to existing kafka topic
for (partition <- to hbaseNumberOfPartitionsForTopic-){
val fromOffset = Bytes.toString(result.getValue(Bytes.toBytes("offsets"),
Bytes.toBytes(partition.toString)))
fromOffsets += (new TopicPartition(TOPIC_NAME,partition) -> fromOffset.toLong)
}
for (partition <- hbaseNumberOfPartitionsForTopic to zKNumberOfPartitionsForTopic-){
fromOffsets += (new TopicPartition(TOPIC_NAME,partition) -> )
}
} else {
//initialize fromOffsets from last run
for (partition <- to hbaseNumberOfPartitionsForTopic- ){
val fromOffset = Bytes.toString(result.getValue(Bytes.toBytes("offsets"),
Bytes.toBytes(partition.toString)))
fromOffsets += (new TopicPartition(TOPIC_NAME,partition) -> fromOffset.toLong)
}
}
scanner.close()
conn.close()
fromOffsets.toMap
}

Once we have the last committed offsets (fromOffsets in this example), we can create a Kafka Direct DStream.

val fromOffsets= getLastCommittedOffsets(topic,consumerGroupID,hbaseTableName,zkQuorum,
zkKafkaRootDir,zkSessionTimeOut,zkConnectionTimeOut) val inputDStream = KafkaUtils.createDirectStream[String,String](ssc,PreferConsistent,
Assign[String, String](fromOffsets.keys,kafkaParams,fromOffsets))

After completing the processing of messages in a Kafka DStream, we can store topic partition offsets by calling saveOffsets().

/*
For each RDD in a DStream apply a map transformation that processes the message.
*/
inputDStream.foreachRDD((rdd,batchTime) => {
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
offsetRanges.foreach(offset => println(offset.topic,offset.partition, offset.fromOffset,
offset.untilOffset))
val newRDD = rdd.map(message => processMessage(message))
newRDD.count()
saveOffsets(topic,consumerGroupID,offsetRanges,hbaseTableName,batchTime)
})

You can inspect the stored offsets in HBase for various topics and consumer groups as shown below.

hbase(main)::> scan 'stream_kafka_offsets', {REVERSED => true}
ROW COLUMN+CELL
kafkablog2:groupid-: column=offsets:, timestamp=, value=
kafkablog2:groupid-: column=offsets:, timestamp=, value=
kafkablog2:groupid-: column=offsets:, timestamp=, value=
kafkablog2:groupid-: column=offsets:, timestamp=, value=
kafkablog2:groupid-: column=offsets:, timestamp=, value=
kafkablog2:groupid-: column=offsets:, timestamp=, value=
kafkablog1:groupid-: column=offsets:, timestamp=, value=
kafkablog1:groupid-: column=offsets:, timestamp=, value=
kafkablog1:groupid-: column=offsets:, timestamp=, value=
kafkablog1:groupid-: column=offsets:, timestamp=, value=
kafkablog1:groupid-: column=offsets:, timestamp=, value=
kafkablog1:groupid-: column=offsets:, timestamp=, value=
row(s) in 0.5030 seconds hbase(main)::>

The code sample in this section used following version of Spark Streaming Kafka Integration

GroupID

ArtifactID

Version

org.apache.spark

spark-streaming_2.11

2.1.0.cloudera1

org.apache.spark

spark-streaming-kafka-0-10_2.11

2.1.0.cloudera1

Check out this github link for the complete code sample.

Storing Offsets in ZooKeeper

Users can store offset ranges in ZooKeeper, which can similarly provide a reliable method for starting stream processing on a Kafka stream where it had last left off.

In this scenario, on start-up, the Spark Streaming job will retrieve the latest processed offsets from ZooKeeper for each topic’s partition. If a new partition is found which was not previously managed in ZooKeeper, its latest processed offset is defaulted to start from the beginning. After processing each batch, the users’ have the capability to either store the first or last offset processed. Additionally, the znode location in which the offset is stored in ZooKeeper uses the same format as the old Kafka consumer API. Therefore, any tools that are built to track or monitor Kafka offsets stored in ZooKeeper still work.

Initialize ZooKeeper connection for retrieving and storing offsets to ZooKeeper.

val zkClientAndConnection = ZkUtils.createZkClientAndConnection(zkUrl, sessionTimeout, connectionTimeout)
val zkUtils = new ZkUtils(zkClientAndConnection._1, zkClientAndConnection._2, false)

Method for retrieving the last offsets stored in ZooKeeper of the consumer group and topic list.

def readOffsets(topics: Seq[String], groupId:String):
Map[TopicPartition, Long] = { val topicPartOffsetMap = collection.mutable.HashMap.empty[TopicPartition, Long]
val partitionMap = zkUtils.getPartitionsForTopics(topics) // /consumers/<groupId>/offsets/<topic>/
partitionMap.foreach(topicPartitions => {
val zkGroupTopicDirs = new ZKGroupTopicDirs(groupId, topicPartitions._1)
topicPartitions._2.foreach(partition => {
val offsetPath = zkGroupTopicDirs.consumerOffsetDir + "/" + partition try {
val offsetStatTuple = zkUtils.readData(offsetPath)
if (offsetStatTuple != null) {
LOGGER.info("retrieving offset details - topic: {}, partition: {}, offset: {}, node path: {}", Seq[AnyRef](topicPartitions._1, partition.toString, offsetStatTuple._1, offsetPath): _*) topicPartOffsetMap.put(new TopicPartition(topicPartitions._1, Integer.valueOf(partition)),
offsetStatTuple._1.toLong)
} } catch {
case e: Exception =>
LOGGER.warn("retrieving offset details - no previous node exists:" + " {}, topic: {}, partition: {}, node path: {}", Seq[AnyRef](e.getMessage, topicPartitions._1, partition.toString, offsetPath): _*) topicPartOffsetMap.put(new TopicPartition(topicPartitions._1, Integer.valueOf(partition)), 0L)
}
})
}) topicPartOffsetMap.toMap
}

Initialization of Kafka Direct Dstream with the specific offsets to start processing from.

val inputDStream = KafkaUtils.createDirectStream(ssc, PreferConsistent, ConsumerStrategies.Subscribe[String,String](topics, kafkaParams, fromOffsets))

Method for persisting a recoverable set of offsets to ZooKeeper.

Note: The offsetPath is a ZooKeeper location represented as, /consumers/[groupId]/offsets/topic/[partitionId], that stores the value of the offset.

def persistOffsets(offsets: Seq[OffsetRange], groupId: String, storeEndOffset: Boolean): Unit = {
offsets.foreach(or => {
val zkGroupTopicDirs = new ZKGroupTopicDirs(groupId, or.topic); val acls = new ListBuffer[ACL]()
val acl = new ACL
acl.setId(ANYONE_ID_UNSAFE)
acl.setPerms(PERMISSIONS_ALL)
acls += acl val offsetPath = zkGroupTopicDirs.consumerOffsetDir + "/" + or.partition;
val offsetVal = if (storeEndOffset) or.untilOffset else or.fromOffset
zkUtils.updatePersistentPath(zkGroupTopicDirs.consumerOffsetDir + "/"
+ or.partition, offsetVal + "", JavaConversions.bufferAsJavaList(acls)) LOGGER.debug("persisting offset details - topic: {}, partition: {}, offset: {}, node path: {}", Seq[AnyRef](or.topic, or.partition.toString, offsetVal.toString, offsetPath): _*)
})
}
  

Kafka Itself

With Cloudera Distribution of Apache Spark 2.1.x, spark-streaming-kafka-0-10 uses the new consumer api that exposes commitAsync API. Using the commitAsync API the consumer will commit the offsets to Kafka after you know that your output has been stored. The new consumer api commits offsets back to Kafka uniquely based on the consumer’s group.id.

Persist Offsets in Kafka

stream.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges // some time later, after outputs have completed
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}

Learn more about this at – http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html#kafka-itself

Note: commitAsync() is part of the kafka-0-10 version of Spark Streaming and Kafka Integration. As noted in Spark documentation, this integration is still experimental and API can potentially change.

Other Approaches

It is worth mentioning that you can also store offsets in a storage system like HDFS. Storing offsets in HDFS is a less popular approach compared to the above options as HDFS has a higher latency compared to other systems like ZooKeeper and HBase. Additionally, writing offsetRanges for each batch in HDFS can lead to a small files problem if not managed properly.

Not managing offsets

Managing offsets is not always a requirement for Spark Streaming applications. One example where it may not be required is when users may only need current data of the streaming application, such as a live activity monitor. In these instances where you don’t require to manage the offsets, you can either set the Kafka parameter auto.offset.reset to either largest or smallest if using the old Kafka consumer or earliest or latest if using the new Kafka consumer.

When you restart the job with auto.offset.reset set to smallest (or earliest), it will replay the whole log from the beginning (smallest offset) of your topic. With this setting all the messages that are still retained in the topic will be read. This might lead to duplicates depending on your Kafka topic retention period.

Alternatively, if you restart the Spark Streaming job with auto.offset.reset to largest (or latest), it reads the messages from latest offset of each Kafka topic partition. This might lead to loss of some messages. Depending on how critical your Spark Streaming application is and the delivery semantics it require, this might be a viable approach.

Summary

All the techniques for managing offsets that we’ve discussed are intended to help provide control of a Spark Streaming’s Direct DStream. This function allows users the ability to restore the state of the stream throughout its lifecycle, deal with unexpected failure, and improve accuracy of results continually being computed and stored.

Learn more about the Spark 2 Kafka Integration at Spark 2 Kafka Integration or Spark Streaming + Kafka Integration Guide.

References to additional information on each of the Spark 2.1.0 packages can be found at the doc spark-streaming-kafka-0-8 and spark-streaming-kafka-0-10.

Offset Management For Apache Kafka With Apache Spark Streaming的更多相关文章

  1. Apache Kafka® is a distributed streaming platform

    Kafka Connect简介 我们知道过去对于Kafka的定义是分布式,分区化的,带备份机制的日志提交服务.也就是一个分布式的消息队列,这也是他最常见的用法.但是Kafka不止于此,打开最新的官网. ...

  2. 1.1 Introduction中 Apache Kafka™ is a distributed streaming platform. What exactly does that mean?(官网剖析)(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Apache Kafka™ is a distributed streaming p ...

  3. spark streaming 接收kafka消息之五 -- spark streaming 和 kafka 的对接总结

    Spark streaming 和kafka 处理确保消息不丢失的总结 接入kafka 我们前面的1到4 都在说 spark streaming 接入 kafka 消息的事情.讲了两种接入方式,以及s ...

  4. Apache Kafka - 介绍

    原文地址地址: http://blogxinxiucan.sh1.newtouch.com/2017/07/12/Apache-Kafka-介绍/ Apache Kafka教程 之 Apache Ka ...

  5. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  6. Apache Kafka教程

    1.卡夫卡教程 今天,我们正在使用Apache Kafka Tutorial开始我们的新旅程.在这个Kafka教程中,我们将看到什么是Kafka,Apache Kafka历史以及Kafka的原因.此外 ...

  7. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  8. 【Spark】Spark Streaming + Kafka direct 的 offset 存入Zookeeper并重用

    Spark Streaming + Kafka direct 的 offset 存入Zookeeper并重用 streaming offset设置_百度搜索 将 Spark Streaming + K ...

  9. Apache Kafka学习 (一)

    前言:最近公司开始要研究大数据的消息记录,于是开始研究kafka. 市面上kafka的书很少,有的也版本比较落后,于是仗着自己英文还不错,上官网直接学习. ^_^ 1. 开始 - 基本概念 学习一样东 ...

随机推荐

  1. Steeltoe之Distributed Tracing篇

    Steeltoe里的分布式追踪功能与Spring Cloud Sleuth一样,支持在日志中记录追踪数据,或者上传到远端的服务,比如Zipkin. Logging 在Steeltoe中使用日志时需要引 ...

  2. 【Python3爬虫】网易云音乐爬虫

    此次的目标是爬取网易云音乐上指定歌曲所有评论并生成词云 具体步骤: 一:实现JS加密 找到这个ajax接口没什么难度,问题在于传递的数据,是通过js加密得到的,因此需要查看js代码. 通过断掉调试可以 ...

  3. Android Nine-patch(.9.png)小结

    最近在项目开发过程中,因为界面布局美化的需要开始接触到.9.png,无论是Goolge官方文档还是网上其他资料, 都给出了很多关于.9.png的基本介绍,.9.png基础文章推荐以下几篇: Googl ...

  4. NET快速信息化系统开发框架 V3.2 -> “用户管理”主界面使用多表头展示、增加打印功能

    RDIFrameowrk.NET 用户管理是使用非常频繁的模块,由于需要展示的字段比较多,以前的展示方式显得不是太规范,现3.2版本用户管理主界面进行了全新的设计,数据列表展示使用了Dev家族全新的G ...

  5. 自定义封装ajax,复制即可用

    支持get.post请求 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  6. Redux,基础

    在学习了React之后, 紧跟着而来的就是Redux了~ 在系统性的学习一个东西的时候, 了解其背景.设计以及解决了什么问题都是非常必要的. 接下来记录的是, 我个人在学习Redux时的一些杂七杂八~ ...

  7. javascript小实例,阻止浏览器默认行为,真的能阻止吗?支持IE和标准浏览器的阻止默认行为的方法

    看到这标题,是不是有点逆天的感觉,总感觉好狂拽炫酷,耳边隐隐约约传来一个声音:你这么叼,你咋不上天呢! ~~ 额,好吧! 话入正题,我为什么会提出这么一个问题呢? 阻止浏览器默认行为,真的能阻止吗?那 ...

  8. 细说MVC中仓储模式的应用

    文章提纲 概述要点 理论基础 详细步骤 总结 概述要点 设计模式的产生,就是在对开发过程进行不断的抽象. 我们先看一下之前访问数据的典型过程. 在Controller中定义一个Context, 例如: ...

  9. 【Java】数组转List常见方式的对比

    一.最常用通过 Arrays.asList(strArray) 方式,将数组转换List后,不能对List增删,只能查改,否则抛异常. 关键代码: List list = Arrays.asList( ...

  10. html/css的学习之路(1)

    HTML5简介:HTML5是什么?要回答这个问题,我们需要先了解一下HTML是什么.HTML的英文全称为Hyper Text Markup Language,即超文本标记语言.HTML5是HTML的一 ...