[Luogu P1082]同余方程
这道题求关于x的同余方程ax≡1(mod b)的最小正整数解。换而言之方程可以转换为ax+by=1,此时有y为负数。此时当且仅当gcd(a,b)|1时,方程有整数解。
于是乎这道题就变成了ax+by=gcd(a,b)即扩展欧几里得问题。如何解决这个问题呢?
由gcd的基本性质可以得出:gcd(b,a%b)=gcd(a,b),这个值我们设为g。既有ax+by=g,bx1+(a%b)y1=g,变形得,bx1+(a-a/b*b)y1=g,展开得ay1+b(x1-y1*a/b)=g,此时显而易见有一组解为:x=y1,y=x1-y1*a/b
那么所有的解都可以由于后面的解得出,于是用递归实现。
//#include<fstream>
//#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
//#include<queue>
//#include<vector>
//#include<stack>
//#include<map>
using namespace std;
long long read(){
long long res=,f=;
char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
res=res*+(ch-'');
ch=getchar();
}
return res*f;
}
//ax+by=gcd(a,b);
long long x,y,xt;
long long a,b;
void exgcd(int a,long long b){
if(b==){
x=;y=;
return;
}
exgcd(b,a%b);
xt=x;
x=y;
y=xt-a/b*y;
}
int main(){
a=read();b=read();
exgcd(a,b);
while(x<)x+=b;
x%=b;
cout<<x;
return ;
}
[Luogu P1082]同余方程的更多相关文章
- 【luogu P1082 同余方程】 题解
最近一直在学习数论,讲得很快,害怕落实的不好,所以做一道luogu的同余方程练练手. 关于x的同余方程 ax ≡ 1 mod m 那么x其实就是求a关于m的乘法逆元 ax + my = 1 对于这个不 ...
- Luogu P1082 同余方程(NOIP 2012) 题解报告
题目传送门 [题目大意] 求关于x的同余方程 ax≡1(mod b)的最小整数解. [思路分析] 由同余方程的有关知识可得,ax≡1(mod b)可以化为ax+by=1,此方程有解当且仅当gcd(a, ...
- luogu P1082 同余方程 |扩展欧几里得
题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...
- Luogu P1082 同余方程(exgcd模版)
传送门 求ax%b = 1,即ax - by = 1: 很明显这是一个exgcd的形式. 那么要做这道题,首先需要gcd和exgcd的算法作铺垫. gcd(辗转相膜法): int gcd(int a, ...
- 洛谷——P1082 同余方程
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- 洛谷P1082 同余方程 [2012NOIP提高组D2T1] [2017年6月计划 数论06]
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- 洛谷P1082 同余方程 题解
题目链接:https://www.luogu.com.cn/problem/P1082 题目大意: 求关于 \(x\) 的同余方程 ax≡1(mod b) 的最小正整数解. 告诉你 \(a,b\) 求 ...
- 洛谷 P1082 同余方程 —— exgcd
题目:https://www.luogu.org/problemnew/show/P1082 用 exgcd 即可. 代码如下: #include<iostream> #include&l ...
- P1082 同余方程(扩欧模板)
https://www.luogu.org/problem/P1082 #include <iostream> #include <cstdio> #include <q ...
随机推荐
- 校园wifi
我校师生访问本校校园WiFi(SSID为UESTC-WiFi),不受任何影响,用户名和密码均不变,可使用本校帐号加后缀@uestc.edu.cn,登录并免费使用eduroam联盟机构的WiFi(SSI ...
- 边框回归(bounding-Box regression)
转自:https://blog.csdn.net/zijin0802034/article/details/77685438 为什么要边框回归? 什么是边框回归? 边框回归怎么做的? 边框回归为什么宽 ...
- MyBatis联表查询
MyBatis逆向工程主要用于单表操作,那么需要进行联表操作时,往往需要我们自己去写sql语句. 写sql语句之前,我们先修改一下实体类 Course.java: public class Cours ...
- Spring系列(三) Bean装配的高级技术
profile 不同于maven的profile, spring的profile不需要重新打包, 同一个版本的包文件可以部署在不同环境的服务器上, 只需要激活对应的profile就可以切换到对应的环境 ...
- ARM 处理器:RISC与CISC 是什么?【转】
转自:https://blog.csdn.net/willsun2017/article/details/83388990 完全看懂 ARM 处理器:RISC与CISC 是什么? 历史.架构一次看透 ...
- css-块级格式上下文
定义: 块级格式上下文(Block Formatting Context)是CSS中一个相对冷门的概念,今天被问到才引起注意,下文简单介绍下它的用法,学习资料多来源于网络,实际开发中遇到再继续更博 ...
- 学习pano2vr制作html5全景笔记
demo截图: demo下载: 百度网盘:http://pan.baidu.com/s/1o8yBwIA 密码:nf62(启服务端查看); 我制作是全屏定点360的全景页面,使用pano2vr软件制作 ...
- FM算法(一):算法理论
主要内容: 动机 FM算法模型 FM算法VS 其他算法 一.动机 在传统的线性模型如LR中,每个特征都是独立的,如果需要考虑特征与特征直接的交互作用,可能需要人工对特征进行交叉组合:非线性SVM可 ...
- 字符串(3)AC自动机
AC自动机真神奇,其实说白了就是在trie树上进行kmp模式匹配,不过刚接触确实有些难度,有些思想确实有些难以理解,所以学习的时候最好亲自手动模拟整个算法的全过程,那我就来写篇blog总结一下. 首先 ...
- UOJ#110. 【APIO2015】Bali Sculptures 贪心 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ110.html 题解 我们发现n=2000 的子任务保证A=1! 分两种情况讨论: $n\leq 100$ ...