rho
bigint pollard_rho(bigint C, bigint N) //返回一个平凡因子
{
bigint I, X, Y, K, D;
I = 1;
X = Y = rand() % N;
K = 2;
do
{
I++;
D = gcd(N + Y - X, N);//这里为了防止负数,先加上一个N
if (D > 1 && D < N) return D;//如果D不是非平凡因子
if (I == K) Y = X, K <<= 1;
X = (product_mod(X, X, N) + N - C) % N;//随机一个增量来求X,Y,使得gcd(Y - X,N)不是非平凡因子(不是1,跟N)
}
while (Y != X);
return N;
}
rho的更多相关文章
- POJ 1811 Prime Test (Pollard rho 大整数分解)
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...
- POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- poj 1811 Pallor Rho +Miller Rabin
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...
- Miller_Rabin素数判断,rho
safe保险一点5吧.我是MR: ; int gcd(int a,int b){return !b?a:gcd(b,a%b);} int mul(int a,int b,int p){ )*p); ? ...
- 质因数分解的rho以及miller-rabin
一.前言 质因数分解,是一个在算法竞赛里老生常谈的经典问题.我们在解决许多问题的时候需要用到质因数分解来辅助运算,而且质因数分解牵扯到许许多多经典高效的算法,例如miller-rabin判断素数算法, ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- Pollard Rho大质数分解学习笔记
目录 问题 流程 代码 生日悖论 end 问题 给定n,要求对n质因数分解 普通的试除法已经不能应用于大整数了,我们需要更快的算法 流程 大概就是找出\(n=c*d\) 如果\(c\)是素数,结束,不 ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
随机推荐
- [HNOI2016]矿区
[HNOI2016]矿区 平面图转对偶图 方法: 1.分成正反两个单向边,每个边属于一个面 2.每个点按照极角序sort出边 3.枚举每一个边,这个边的nxt就是反边的前一个(这样找到的是面的边逆时针 ...
- SP687 REPEATS - Repeats
给定字符串,求重复次数最多的连续重复子串. 题目很简单,被细节坑惨了... 前置的一个推论:请看这里. #include <bits/stdc++.h> using namespace s ...
- 寒冬之下,移动开发没人要了? 浅谈 iOS 开发者该 何去何从?
前言: 作者 | 梅梅 文章来源 CSDN 对于移动互联网而言,2018 年像是球场上的一声裁判哨.哨声响起,高潮迭起的上半场结束.本该再创辉煌的下半场,还没开赛却被告之:规则改变.场地收缩.教 ...
- Vue(项目踩坑)_解决vue中axios请求跨域的问题
一.前言 今天在做项目的时候发现axios不能请求跨域接口 二.主要内容 1.之前直接用get方式请求聚合数据里的接口报错如下 2.当前请求的代码 3.解决方法 (1)在项目目录中依次找到:confi ...
- JavaScript对象 Object类型基础
前言 JavaScript 对象是整个语言学习的一个难点.本文主要带大家入门学习Object知识 对象定义 javascript的基本数据类型包括undefined.null.boolean.stri ...
- [物理学与PDEs]第2章第2节 粘性流体力学方程组 2.2 应力张量
1. 在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2. 于 $M$ 处以 ${\bf n}$ 为法向的单位面积 ...
- python下调用pytesseract识别某网站验证码
一.pytesseract介绍 1.pytesseract说明 pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract Pyt ...
- FM(工程实现)
摘自: https://www.cnblogs.com/AndyJee/p/8032553.html 一.FM模型函数 二.FM对参数求导结果 三.算法实现 主要超参数有:初始化参数.学习率.正则化稀 ...
- Codeforces 1101G(线性基)
题目链接 题意 将序列尽可能分成多段使得任意$x \geq 1$段内的所有元素的异或和大于$0$问最多多少段 思路 首先,如果所有元素异或和等于$0$答案显然为$-1$,否则构造整个序列的线性基,这个 ...
- Codeforces Round #449 (Div. 2) D. Ithea Plays With Chtholly
题目链接 交互题. 题意:给你三个数n,m,k.让你完成至多m次互动,每次给你一个q,让你从n个位置选一个位置放这个数,覆盖已经放过的数.让你再m次使得n个位置的数不递减,达到直接退出. 解法:暴力, ...