[LOJ3083][GXOI/GZOI2019]与或和——单调栈
题目链接:
既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵。
对于或运算,就是求有多少个子矩形中有$1$。
直接求不好办,考虑有多少个矩形只有$0$。
我们统计以每个$0$为矩形右下角的矩形有多少个。
对于第$i$行的每一列维护出从这一行开始往上有多少个连续的$0$。
现在问题就变成了对于第$i$行的每一列,之前有多少个格子能作为矩形的左上角和它匹配。
用单调栈维护一个单调递增的序列对每行分别统计答案即可。
对于与运算,就是将总子矩形数$-$包含$0$的子矩形数,对$0$再做一遍即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<int,int>
using namespace std;
const int mod=1e9+7;
ll ans1,ans2;
int a[1010][1010];
int b[1010][1010];
int n;
int mx[1010];
int top;
pr st[1010];
ll sum;
ll find1()
{
memset(mx,0,sizeof(mx));
ll res=0;
for(int i=1;i<=n;++i)
{
ll num=0;
top=0;
for(int j=1;j<=n;++j)
{
mx[j]=b[i][j]?mx[j]+1:0;
int len=1;
while(top&&st[top].first>=mx[j])
{
num-=st[top].first*st[top].second;
len+=st[top].second;
top--;
}
num+=mx[j]*len;
res=(res+num)%mod;
st[++top]=make_pair(mx[j],len);
}
}
return res;
}
ll find2()
{
memset(mx,0,sizeof(mx));
ll res=0;
for(int i=1;i<=n;++i)
{
ll num=0;
top=0;
for(int j=1;j<=n;++j)
{
mx[j]=(!b[i][j])?mx[j]+1:0;
int len=1;
while(top&&st[top].first>=mx[j])
{
num-=st[top].first*st[top].second;
len+=st[top].second;
top--;
}
num+=mx[j]*len;
res=(res+num)%mod;
st[++top]=make_pair(mx[j],len);
}
}
return res;
}
int main()
{
scanf("%d",&n);
sum=1ll*n*(n+1)/2*n*(n+1)/2;
sum%=mod;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
scanf("%d",&a[i][j]);
}
}
for(int k=0;k<=31;++k)
{
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
if(a[i][j]&(1<<k))
{
b[i][j]=1;
}
else
{
b[i][j]=0;
}
}
}
ans1+=(1ll<<k)%mod*find1()%mod,ans1%=mod;
ans2+=(1ll<<k)%mod*(sum-find2()+mod)%mod,ans2%=mod;
}
ans1=(ans1%mod+mod)%mod,ans2=(ans2%mod+mod)%mod;
printf("%lld %lld",ans1,ans2);
}
[LOJ3083][GXOI/GZOI2019]与或和——单调栈的更多相关文章
- 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)
LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...
- [GXOI/GZOI2019]与或和(单调栈)
想了想决定把这几题也随便水个解题报告... bzoj luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...
- 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)
[BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...
- LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...
- 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...
- LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)
题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...
- [GXOI/GZOI2019]与或和(位运算,单调栈)
题目链接懒得放了. 题目大意懒得写了. 省选原题哪有找不到的…… 说实话,其实这题是个大水题,被我十秒钟内口胡出来了. 首先位运算除了拆位还能干啥?以下以与为例,或是差不多的. 我们考虑有多少个子矩阵 ...
- [GX/GZOI2019]与或和(单调栈+按位运算)
首先看到与或,很显然想到按照位拆分运算.然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可.记录c[i][j]表示以a[i][ ...
- P5300 [GXOI/GZOI2019]与或和
题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一 ...
随机推荐
- 关系型数据库中主键(primary key)和外键(foreign key)的概念。
刚接触关系型数据库的同学,会听过主键和外键的概念.这是关系型数据库的基本概念,需要清楚理解.今天我就以简洁的语言总结一下这个概念. 主键.一句话概括:一张表中,可以用于唯一标识一条记录的字段组(或者说 ...
- Android 应用的逆向和审计
Android 应用程序拆解 Android 应用程序是在开发应用程序时创建的数据和资源文件的归档文件. Android 应用程序的扩展名是.apk,意思是应用程序包,在大多数情况下包括以下文件和文件 ...
- asp.net/wingtip/显示数据和详细信息
前边我们的工作处于wingtip工程基础建设阶段,先是建立了“数据访问层”,然后设计建设了“UI和导航”的框架,接下来要充实工程的内容,显示“数据和详细信息”. 一. 添加数据控件(Data Cont ...
- Java新知识系列 七
抽象类和接口的区别和特点 java的JDK中包含的五个工具 编译型语言和解释型语言 Java和C++的区别` 常见的ASCII的值 Forward和Redirect之间的对比 Web Service ...
- Docker 创建 Confluence6.12.2 中文版
目录 目录 1.介绍 1.1.什么是Confluence? 2.Confluence的官网在哪里? 3.如何下载安装? 4.对 Confluence 进行配置 4.1.设置 Confluence 4. ...
- Django 如何让ajax的POST方法带上CSRF令牌
问题 大家知道,在大前端领域,有一种叫做ajax的东东,即“Asynchronous Javascript And XML”(异步 JavaScript 和 XML),它被用来在不刷新页面的情况下,提 ...
- 如何在MongoDB设计存储你的数据(JSON化)?
第一步 定义要描述的数据集 当我们决定将数据存储下来的时候,我们首先要回答的一个问题就是:“我打算存储什么样的数据?这些数据之间有什么关系?实体之间有什么关系?实体的属性之间有什么关系”. 为了说明问 ...
- cesium加载纽约市3dtiles模型
const tileset = new Cesium.Cesium3DTileset({ url: '../../assets/data/NewYork/tileset.json' }); viewe ...
- easyUI行删除
function removeRow(target,number) { if (number) { var index = getRowIndex(target); $datagrid.datagri ...
- jquery 选择器、筛选器、事件绑定与事件委派
一.jQuery简介 1.可用的jQuery服务器网站:https://www.bootcdn.cn/ jQuery是一个快速的,简洁的javaScript库,使用户能更方便地处理HTMLdocume ...