FFT Cheetsheet
参考资料 https://oi.men.ci/fft-notes/
单位根(此类群均可)
\(ω^0, ω^1, \dots, ω^{n-1}互不相同\)
\(ω^k_n=ω^{2k}_{2n}\)
\(ω^{k+n/2}_n = ω^{-k}_n\)
\(ω_n^n=ω_n^0=1\)
DFT
\[
A =(a_0, a_1,\cdots, a_{n-1})\\
A(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}\\
A' = DFT(A) = (A(ω_n^0), \cdots, A(ω_n^{n-1}))\\
A'是A的DFT.
\]
\[
\begin{align*} A_0(x) &= a_0 + a_2 x + a_4 x ^ 2 + \dots + a_{n - 2} x ^ {\frac{n}{2} - 1} \\ A_1(x) &= a_1 + a_3 x + a_5 x ^ 2 + \dots + a_{n - 1} x ^ {\frac{n}{2} - 1} \end{align*} \\
.\\
有A(ω_n^k) = A_0(ω^k_{n/2})+ω_n^kA_1(ω^k_{n/2}), k\in [0, n/2)
\\A(ω_n^k) = A_0(ω^k_{n/2})-ω_n^kA_1(ω^k_{n/2}), k\in [n/2, n)
\]
IDFT
\[
A =(a_0, a_1,\cdots, a_{n-1})\\
A(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}\\
A' = IDFT(A) = (A(ω_n^0)/n,A(\omega_n^{-1})/n, \cdots, A(ω_n^{-(n-1)})/n)\\
A'是A的IDFT.
\]
蝶形变换
(00, 01, 10, 11)
先按奇偶性分类
(00, 10), (01, 11)
不考虑末位之后,开始最初奇偶性分类过程
(0,1),(0,1)
所以反转二进制位,按反转后顺序操作。
FFT Cheetsheet的更多相关文章
- 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)
对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 为什么FFT时域补0后,经FFT变换就是频域进行内插?
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...
- FFT NNT
算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- ECF R9(632E) & FFT
Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...
- fft练习
数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...
- FFT时域与频域的关系,以及采样速率与采样点的影响
首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...
- 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT
前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...
随机推荐
- IScroll5不能滑到最底端的解决办法
IScroll总体上用起来比较简单,但是如果用不好的可能会产生底部一点滚动不上去的问题. 环境:weui+iscroll5 整体布局及id如下 searchbarwrapper divscroll ...
- IPv6 RIPng (PT)
在Cisco路由器上配置RIPng 一.拓扑图 二.地址表 Device Interface IPv6 Address R1 F 0/0 2001:0DB8:CAFE:0001::1/64 S 0/ ...
- jmeter中的参数化
1.那些场景需要参数化? 1.登陆认证信息 2.一些和时间相关的,违反时间约束的[时间点和当前时间不一致的情况等等] 3.一些受其他字段约束的[例如字段的一些限制条件] 4.一些来自于其他数据源[例如 ...
- react动态路由以及获取动态路由
业务中会遇到点击列表跳转到详情页, 1.在index.js修改我们的跟组件 新建router2的文件 import React from 'react' import { HashRouter as ...
- webbrowser设置为相应的IE版本
注册表路径: HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Internet Explorer\Main\FeatureControl\FEATU ...
- 20175315 实验二《Java面向对象程序设计》实验报告
20175315 实验二<Java面向对象程序设计>实验报告 一.实验内容及步骤 1.初步掌握单元测试和TDD 单元测试 任务一:三种代码 用程序解决问题时,要学会写以下三种代码: 伪代码 ...
- python学习第31天
# 操作系统的发展历程 # 主要的人机矛盾是什么 : CPU的使用率 # 输入\输出数据和CPU计算没有关系 # 操作系统是怎么进化的 # 传统的纸带输入 # 磁带的存储降低了输入输出数据占用的时间, ...
- Java字符串中常用字符占用字节数
java中一个char型的数据(也就是一个字符)占两个字节.而Java中常用的字符包括数字.英文字母.英文符号.中文汉字.中文符号等,若在字符串中包含里面的多种字符,它们是否都占两个字符呢?答案是否定 ...
- Spring Cloud微服务集成配置中心
1. 搭建Spring Cloud Config配置中心(见上一篇博客) 2. 创建微服务项目bounter-simon-app,pom文件如下: <?xml version="1.0 ...
- Sprite子节点透明度不能跟随父节点变化的问题求解(转)
原出处忘记了. [已解决]Sprite子节点透明度不能跟随父节点变化的问题求解 自己封装了一个按钮控件,点击的时候封装了一些动作,其中有透明度的变化. 当点击发生的时候,Sprite本体执行正常,但是 ...