Tree

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 920    Accepted Submission(s): 388

Problem Description
You are given a tree with N nodes which are numbered by integers 1..N. Each node is associated with an integer as the weight.

Your task is to deal with M operations of 4 types:

1.Delete an edge (x, y) from the tree, and then add a new edge (a, b). We ensure that it still constitutes a tree after adding the new edge.

2.Given two nodes a and b in the tree, change the weights of all the nodes on the path connecting node a and b (including node a and b) to a particular value x.

3.Given two nodes a and b in the tree, increase the weights of all the nodes on the path connecting node a and b (including node a and b) by a particular value d.

4.Given two nodes a and b in the tree, compute the second largest weight on the path connecting node a and b (including node a and b), and the number of times this weight occurs on the path. Note that here we need the strict second largest weight. For instance, the strict second largest weight of {3, 5, 2, 5, 3} is 3.

 
Input
The first line contains an integer T (T<=3), which means there are T test cases in the input.

For each test case, the first line contains two integers N and M (N, M<=10^5). The second line contains N integers, and the i-th integer is the weight of the i-th node in the tree (their absolute values are not larger than 10^4).

In next N-1 lines, there are two integers a and b (1<=a, b<=N), which means there exists an edge connecting node a and b.

The next M lines describe the operations you have to deal with. In each line the first integer is c (1<=c<=4), which indicates the type of operation.

If c = 1, there are four integers x, y, a, b (1<= x, y, a, b <=N) after c.
If c = 2, there are three integers a, b, x (1<= a, b<=N, |x|<=10^4) after c.
If c = 3, there are three integers a, b, d (1<= a, b<=N, |d|<=10^4) after c.
If c = 4 (it is a query operation), there are two integers a, b (1<= a, b<=N) after c.

All these parameters have the same meaning as described in problem description.

 
Output
For each test case, first output "Case #x:"" (x means case ID) in a separate line.

For each query operation, output two values: the second largest weight and the number of times it occurs. If the weights of nodes on that path are all the same, just output "ALL SAME" (without quotes).

 
Sample Input
2
3 2
1 1 2
1 2
1 3
4 1 2
4 2 3
7 7
5 3 2 1 7 3 6
1 2
1 3
3 4
3 5
4 6
4 7
4 2 6
3 4 5 -1
4 5 7
1 3 4 2 4
4 3 6
2 3 6 5
4 3 6
 
Sample Output
Case #1:
ALL SAME
1 2
Case #2:
3 2
1 1
3 2
ALL SAME
/*
hdu 5002 (动态树lct) problem:
给你一棵树树,主要包含四个操作:
1 x y u v:断开x,y之间的边 连接上u,v
2 x y w:将x->y之间的点权全部置为w
3 x y w:将x->y之间的点权全部加上w
4 x y:查询x->y之间第二大的 solve:
只是需要维护下第二大值,其它直接套模板 hhh-2016-08-20 17:21:29
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson ch[0]
#define rson ch[1]
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 300100;
const int INF = 0x3f3f3f3f; struct Node* null;
struct Node
{
Node* ch[2] ;
Node* fa;
int Size ;
int mMax ;
int sMax ;
int max_num ;
int Max_num ;
int val ;
int add ;
int same ;
int rev;
void newnode(int v)
{
val = v ;
mMax = v ;
sMax = -INF ;
Max_num = 1 ;
max_num = 0 ;
Size = 1 ;
add = 0 ;
same = -INF ;
fa = ch[0] = ch[1] = null ;
rev = 0;
}
void update_rev()
{
if(this == null)
return ;
swap(ch[0],ch[1]);
rev ^= 1;
}
void update_add(int v)
{
if(this == null )return ;
add += v;
mMax += v,val += v;
if(sMax != -INF) sMax += v;
} void update_same(int v)
{
if(this == null) return ;
same = v;
add = 0,val = v,mMax = v;
sMax = -INF,Max_num = Size,max_num = 0;
}
void cal(int val,int num)
{
if ( val == -INF ) return ;
if ( val < sMax ) return ;
if ( val > mMax )
{
sMax = mMax ;
max_num = Max_num ;
mMax = val ;
Max_num = num ;
}
else if ( val == mMax )
{
Max_num += num ;
}
else if ( val > sMax )
{
sMax = val ;
max_num = num ;
}
else max_num += num ;
}
void push_up () {
Size = ch[0]->Size + 1 + ch[1]->Size ;
mMax = sMax = -INF ;
max_num = Max_num = 0 ;
cal ( val , 1 ) ;
cal ( ch[0]->mMax , ch[0]->Max_num ) ;
cal ( ch[0]->sMax , ch[0]->max_num ) ;
cal ( ch[1]->mMax , ch[1]->Max_num ) ;
cal ( ch[1]->sMax , ch[1]->max_num ) ;
} void push_down()
{
if(rev)
{
ch[0]->update_rev();
ch[1]->update_rev();
rev = 0;
}
if(same != -INF)
{
ch[0]->update_same(same);
ch[1]->update_same(same);
same = -INF;
}
if(add)
{
ch[0]->update_add(add);
ch[1]->update_add(add);
add = 0;
}
} void link_child ( Node* to , int d )
{
ch[d] = to;
to->fa = this ;
} int isroot()
{
return fa == null || this != fa->ch[0] && this != fa->ch[1] ;
}
void down()
{
if ( !isroot () ) fa->down () ;
push_down () ;
}
void Rotate ( int d )
{
Node* f = fa ;
Node* ff = fa->fa ;
f->link_child ( ch[d] , !d ) ;
if ( !f->isroot () )
{
if ( ff->ch[0] == f ) ff->link_child ( this , 0 ) ;
else ff->link_child ( this , 1 ) ;
}
else fa = ff ;
link_child (f,d) ;
f->push_up () ;
} void splay ()
{
down () ;
while ( !isroot () ) {
if ( fa->isroot () ) {
this == fa->ch[0] ? Rotate ( 1 ) : Rotate ( 0 ) ;
} else {
if ( fa == fa->fa->ch[0] ) {
this == fa->ch[0] ? fa->Rotate ( 1 ) : Rotate ( 0 ) ;
Rotate ( 1 ) ;
} else {
this == fa->ch[1] ? fa->Rotate ( 0 ) : Rotate ( 1 ) ;
Rotate ( 0 ) ;
}
}
}
push_up () ;
} void access()
{
Node* now = this ;
Node* x = null ;
while ( now != null )
{
now->splay () ;
now->link_child ( x , 1 ) ;
now->push_up () ;
x = now ;
now = now->fa ;
}
splay () ;
} void make_root()
{
access();
update_rev();
} void cut()
{
access();
ch[0]->fa = null;
ch[0] = null;
push_up();
}
Node* find_root ()
{
access () ;
Node* to = this ;
while ( to->ch[0] != null )
{
to->push_down () ;
to = to->ch[0] ;
}
return to ;
}
void cut(Node* to)
{
to->make_root();
cut();
} void link(Node* to)
{
to->make_root();
to->fa = this;
}
void make_same(Node* to,int val)
{
to->make_root();
access();
update_same(val);
}
void make_add(Node* to,int val)
{
to->make_root();
access();
update_add(val);
}
void query(Node* to)
{
to->make_root();
access(); if(!max_num)
printf("ALL SAME\n");
else
printf("%d %d\n",sMax,max_num);
}
};
Node memory_pool[maxn];
Node* now;
Node* node[maxn]; void Clear()
{
now = memory_pool;
now->newnode(-INF);
null = now ++;
null->Size = 0;
} int main()
{
int T,n,cas = 1,m;
int x,y,a,b,c;
int ob;
// freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--)
{
Clear();
scanf("%d%d",&n,&m);
printf("Case #%d:\n",cas++);
for(int i = 1; i <= n; i++)
{
scanf("%d",&x);
now->newnode(x);
node[i] = now++;
} for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
node[a]->link(node[b]); }
for(int i= 1; i <= m; i++)
{
scanf("%d",&ob);
if(ob == 1)
{
scanf("%d%d%d%d",&x,&y,&a,&b);
node[x]->cut(node[y]);
node[a]->link(node[b]);
}
else if(ob == 2)
{
scanf("%d%d%d",&x,&y,&c);
node[x]->make_same(node[y],c);
}
else if(ob == 3)
{
scanf("%d%d%d",&x,&y,&c);
node[x]->make_add(node[y],c);
}
else if(ob == 4)
{
scanf("%d%d",&x,&y);
node[x]->query(node[y]); }
}
}
return 0;
}

  

hdu 5002 (动态树lct)的更多相关文章

  1. hdu 5398 动态树LCT

    GCD Tree Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  2. hdu 5314 动态树

    Happy King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  3. HDU 4718 The LCIS on the Tree (动态树LCT)

    The LCIS on the Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  4. 动态树LCT小结

    最开始看动态树不知道找了多少资料,总感觉不能完全理解.但其实理解了就是那么一回事...动态树在某种意思上来说跟树链剖分很相似,都是为了解决序列问题,树链剖分由于树的形态是不变的,所以可以通过预处理节点 ...

  5. bzoj2049-洞穴勘测(动态树lct模板题)

    Description 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好 ...

  6. [模板] 动态树/LCT

    简介 LCT是一种数据结构, 可以维护树的动态加边, 删边, 维护链上信息(满足结合律), 单次操作时间复杂度 \(O(\log n)\).(不会证) 思想类似树链剖分, 因为splay可以换根, 用 ...

  7. 动态树LCT(Link-cut-tree)总结+模板题+各种题目

    一.理解LCT的工作原理 先看一道例题: 让你维护一棵给定的树,需要支持下面两种操作: Change x val:  令x点的点权变为val Query x y:  计算x,y之间的唯一的最短路径的点 ...

  8. SPOJ OTOCI 动态树 LCT

    SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...

  9. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 (动态树LCT)

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2843  Solved: 1519[Submi ...

随机推荐

  1. TRY

  2. fs输出文件目录

    var http = require("http"); var fs = require("fs"); var server = http.createServ ...

  3. html{font-size:62.5%}

    为什么要使用html,body{font-size:62.5%}? 使用以下代码查看浏览器的初始font-size: <!DOCTYPE html><html><head ...

  4. 2018年东北农业大学春季校赛-wyh的吃鸡

    BFS: 1. 从起点开始BFS,遇到X点则return: 2. vis[px][py][0]代表经过pxpy这点前还没有找到车: vis[px][py][1]代表经过pxpy这点前已经找到车: 3. ...

  5. svn的使用技巧

    就是如果想一个文件在提交的时候不被上传,可以设置忽略这样提交的时候就不会被上传

  6. 谈谈ASP.NET Core中的ResponseCaching

    前言 前面的博客谈的大多数都是针对数据的缓存,今天我们来换换口味.来谈谈在ASP.NET Core中的ResponseCaching,与ResponseCaching关联密切的也就是常说的HTTP缓存 ...

  7. .NET CORE 框架ABP的代码生成器(ABP Code Power Tools )使用说明文档

    前言 各位好,又是一个多月没更新文章了. 原因嘛,大家都懂的,太忙了~ 临近年末,公司的项目.年会的做技术支持,同事朋友聚餐也比较频繁. 当然视频教程也没有继续更新.我的锅~ 但是这个月好歹抽空做了一 ...

  8. LinkedHashMap就这么简单【源码剖析】

    前言 声明,本文用得是jdk1.8 前面已经讲了Collection的总览和剖析List集合以及散列表.Map集合.红黑树还有HashMap基础了: Collection总览 List集合就这么简单[ ...

  9. python网络编程基础(一)

    一.C/S架构 客户端/服务端架构 二.OSI七层架构 七层模型,亦称OSI(Open System Interconnection)参考模型,是参考模型是国际标准化组织(ISO)制定的一个用于计算机 ...

  10. Java-Maven(三):Maven坐标、Maven仓库、Maven生命周期

    之前通过学习对maven命令有了部分了解,但是只是知道maven是用来做什么.但到目前位置还不足以全面的了解maven,为更全面的了解maven,需要学习以下几个概念:Maven坐标.Maven仓库. ...