Linux采用了通用的四级分页机制,所谓通用就是指Linux使用这种分页机制管理所有架构的分页模型,即便某些架构并不支持四级分页。对于常见的x86架构,如果系统是32位,二级分页模型就可满足系统需求;如果32位系统采用PAE(物理地址扩展)模式,Linux使用三级分页模型;如果是64位系统,Linux使用四级分页模型,也就是说x86架构的分页模型可能是二级、三级或四级。

1.三级分页模型

Linux虚拟内存三级管理由以下三级组成。

  • PGD: Page Global Directory(页目录)
  • PMD:Page Middle Directory(页中间目录)
  • PTE:Page Table Entry(也表项)

每一级有以下三个关键的宏:

SHIFT

SIZE

MASK

1.1.Page Directory(PGD and PMD)

每个进程都有自己的PGD,它是一个物理页,并包含一个pgd_t数组。进程的pgd_t数组见task_struct->mm_struct->pgt_t * pgt;

在三级分页模型中PGD_SHIFT以及掩码的作用示意图:

三级分页寻址的示意图:

2.四级分页模型

有了三级分页模型的基础,四级分页只是在中间又加了一层索引

2.1.PGDIR_SHIFT及相关的宏

表示线性地址中的offset字段,Table字段,Middle Dir字段和Upper Dir 字段,PGDIR_SIZE用于计算页全局目录中一个表项能映射区域的大小。PGDIR_MASK用于屏蔽线性地址中Middle Dir字段、Table字段和offset字段所在位。

在四级分页模型中,PGDIR_SHIFT占据39位,即9位页上级目录、9位页中间目录、9位页表和12位偏移。页全局目录同样占线性地址的9位,因此PTRS_PER_PGD(表示的是PGD对应的页表中有多少个表项)为512。


arch/x86/include/asm/pgtable_64_types.h #define PGDIR_SHIFT 39 #define PTRS_PER_PGD 512 #define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE - 1))

pgd_offset

该函数返回线性地址address在页全局目录中对应表项的线性地址。mm为指向一个内存描述符的指针,address为要转换的线性地址。该宏最终返回address在页全局目录中相应表项的线性地址。

#define pgd_index(address)	(((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))

2.1.PUD_SHIFT及相关的宏

表示线性地址中offset字段、Table字段和Middle Dir字段的位数。PUD_SIZE用于计算页上级目录一个表项映射的区域大小,PUD_MASK用于屏蔽线性地址中Middle Dir字段、Table字段和offset字段所在位。

在64位系统四级分页模型下,PUD_SHIFT的大小为30,包括12位的offset字段、9位Table字段和9位Middle Dir字段。由于页上级目录在线性地址中占9位,因此页上级目录的表项数为512。


arch/x86/include/asm/pgtable_64_types.h #define PUD_SHIFT 30 #define PTRS_PER_PUD 512 #define PUD_SIZE (_AC(1, UL) << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE - 1))

pud_offset

该函数与pgd_offset类似,最终得到address对应的页上级目录项的线性地址。


#define pud_offset(dir,addr) \ ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) #endif

2.2PMD_SHIFT及相关宏

表示线性地址中offset字段和Table字段的位数,2的PMD_SHIFT次幂表示一个页中间目录项可以映射的内存区域大小。PMD_SIZE用于计算这个区域的大小,PMD_MASK用来屏蔽offset字段和Table字段的所有位。PTRS_PER_PMD表示页中间目录中表项的个数。

在64位系统中,Linux采用四级分页模型。线性地址包含页全局目录、页上级目录、页中间目录、页表和偏移量五部分。在这两种模型中PMD_SHIFT占21位,即包括Table字段的9位和offset字段的12位。PTRS_PER_PMD的值为512,即2的9次幂,表示页中间目录包含的表项个数。


#define PMD_SHIFT 21 #define PTRS_PER_PMD 512 #define PMD_SIZE (_AC(1, UL) << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE - 1))

pmd_offset

该函数返回address在页中间目录中对应表项的线性地址。

2.3.PAGE_SHIFT及相关宏

表示线性地址offset字段的位数。该宏的值被定义为12位,即页的大小为4KB。与它对应的宏有PAGE_SIZE,它返回一个页的大小;PAGE_MASK用来屏蔽offset字段,其值为oxfffff000。PTRS_PER_PTE表明页表在线性地址中占据9位。

通过上面的分析可知,在x86-64架构下64位的线性地址被划分为五部分,每部分占据的位数分别为9,9,9,9,12,实际上只用了64位中的48位。对于四级页表而言,级别从高到底每级页表中表项的个数为512,512,512,512。

3.基于上面的分析,编写内核模块,获取一个线性地址对应的物理地址。

首先写一个测试程序获取其虚拟地址

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
char *p = NULL;
p = malloc(10);
printf("address = 0x%x\n",p);
while(1);
return 0;
}

下面是内核模块的整个代码

#include  <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/pid.h>
#include <linux/mm.h>
#include <asm/pgtable.h>
#include <asm/page.h> MODULE_AUTHOR("wang.com");
MODULE_DESCRIPTION("vitual address to physics address"); static int pid;
static unsigned long va; module_param(pid,int,0644); //从命令行传递参数(变量,类型,权限)
module_param(va,ulong,0644); //va表示的是虚拟地址 static int find_pgd_init(void)
{
unsigned long pa = 0; //pa表示的物理地址
struct task_struct *pcb_tmp = NULL;
pgd_t *pgd_tmp = NULL;
pud_t *pud_tmp = NULL;
pmd_t *pmd_tmp = NULL;
pte_t *pte_tmp = NULL; printk(KERN_INFO"PAGE_OFFSET = 0x%lx\n",PAGE_OFFSET); //页表中有多少个项
/*pud和pmd等等 在线性地址中占据多少位*/
printk(KERN_INFO"PGDIR_SHIFT = %d\n",PGDIR_SHIFT);
//注意:在32位系统中 PGD和PUD是相同的
printk(KERN_INFO"PUD_SHIFT = %d\n",PUD_SHIFT);
printk(KERN_INFO"PMD_SHIFT = %d\n",PMD_SHIFT);
printk(KERN_INFO"PAGE_SHIFT = %d\n",PAGE_SHIFT); printk(KERN_INFO"PTRS_PER_PGD = %d\n",PTRS_PER_PGD); //每个PGD里面有多少个ptrs
printk(KERN_INFO"PTRS_PER_PUD = %d\n",PTRS_PER_PUD);
printk(KERN_INFO"PTRS_PER_PMD = %d\n",PTRS_PER_PMD); //PMD中有多少个项
printk(KERN_INFO"PTRS_PER_PTE = %d\n",PTRS_PER_PTE); printk(KERN_INFO"PAGE_MASK = 0x%lx\n",PAGE_MASK); //页的掩码 struct pid *p = NULL;
p = find_vpid(pid); //通过进程的pid号数字找到struct pid的结构体
pcb_tmp = pid_task(p,PIDTYPE_PID); //通过pid的结构体找到进程的task struct
printk(KERN_INFO"pgd = 0x%p\n",pcb_tmp->mm->pgd);
// 判断给出的地址va是否合法(va&lt;vm_end)
if(!find_vma(pcb_tmp->mm,va)){
printk(KERN_INFO"virt_addr 0x%lx not available.\n",va);
return 0;
}
pgd_tmp = pgd_offset(pcb_tmp->mm,va); //返回线性地址va,在页全局目录中对应表项的线性地址
printk(KERN_INFO"pgd_tmp = 0x%p\n",pgd_tmp);
//pgd_val获得pgd_tmp所指的页全局目录项
//pgd_val是将pgd_tmp中的值打印出来
printk(KERN_INFO"pgd_val(*pgd_tmp) = 0x%lx\n",pgd_val(*pgd_tmp));
if(pgd_none(*pgd_tmp)){ //判断pgd有没有映射
printk(KERN_INFO"Not mapped in pgd.\n");
return 0;
}
pud_tmp = pud_offset(pgd_tmp,va); //返回va对应的页上级目录项的线性地址
printk(KERN_INFO"pud_tmp = 0x%p\n",pud_tmp);
printk(KERN_INFO"pud_val(*pud_tmp) = 0x%lx\n",pud_val(*pud_tmp));
if(pud_none(*pud_tmp)){
printk(KERN_INFO"Not mapped in pud.\n");
return 0;
}
pmd_tmp = pmd_offset(pud_tmp,va); //返回va在页中间目录中对应表项的线性地址
printk(KERN_INFO"pmd_tmp = 0x%p\n",pmd_tmp);
printk(KERN_INFO"pmd_val(*pmd_tmp) = 0x%lx\n",pmd_val(*pmd_tmp));
if(pmd_none(*pmd_tmp)){
printk(KERN_INFO"Not mapped in pmd.\n");
return 0;
}
//在这里,把原来的pte_offset_map()改成了pte_offset_kernel
pte_tmp = pte_offset_kernel(pmd_tmp,va); //pte指的是 找到表 printk(KERN_INFO"pte_tmp = 0x%p\n",pte_tmp);
printk(KERN_INFO"pte_val(*pte_tmp) = 0x%lx\n",pte_val(*pte_tmp));
if(pte_none(*pte_tmp)){ //判断有没有映射
printk(KERN_INFO"Not mapped in pte.\n");
return 0;
}
if(!pte_present(*pte_tmp)){
printk(KERN_INFO"pte not in RAM.\n");
return 0;
}
pa = (pte_val(*pte_tmp) & PAGE_MASK) ;//物理地址的计算方法
printk(KERN_INFO"virt_addr 0x%lx in RAM Page is 0x%lx .\n",va,pa);
//printk(KERN_INFO"contect in 0x%lx is 0x%lx\n",pa,*(unsigned long *)((char *)pa + PAGE_OFFSET)); return 0; } static void __exit find_pgd_exit(void)
{
printk(KERN_INFO"Goodbye!\n"); } module_init(find_pgd_init);
module_exit(find_pgd_exit); MODULE_LICENSE("GPL");

Makefile

# If KERNELRELEASE is defined, we've been invoked from the
# # kernel build system and can use its language.
ifneq ($(KERNELRELEASE),)
obj-m := lab3.o
# # Otherwise we were called directly from the command
# line; invoke the kernel build system.
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd) default:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
endif clean:
rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions *.order *.symvers *.unsigned

注意在传参数给内核模块时,不能有空格

insmod lab3.ko pid=2630 va=0xa87010

通过dmesg查看打印的信息:

至此可以看到相关的宏,以及线性地址对应的物理地址。

linux x86内核中的分页机制的更多相关文章

  1. Linux内核中的信号机制--一个简单的例子【转】

    本文转载自:http://blog.csdn.net/ce123_zhouwei/article/details/8562958 Linux内核中的信号机制--一个简单的例子 Author:ce123 ...

  2. Kafka内核中的分布式机制实现

    Kafka内核中的分布式机制实现 一个Topic中的所有数据分布式的存储在kafka集群的所有机器(broker)上,以分区(partition)的的形式进行数据存储:每个分区允许存在备份数据/备份分 ...

  3. Linux内核中的Workqueue机制分析

    1. 什么是workqueue Linux中的workqueue(工作队列)主要是为了简化在内核创建线程而设计的.通过相应的工作队列接口,可以使开发人员只关心与特定功能相关的处理流程,而不必关心内核线 ...

  4. 内核中的锁机制--RCU

    一. 引言 众所周知,为了保护共享数据,需要一些同步机制,如自旋锁(spinlock),读写锁(rwlock),它们使用起来非常简单,而且是一种很有效的同步机制,在UNIX系统和Linux系统中得到了 ...

  5. 【转】linux设备驱动程序中的阻塞机制

    原文网址:http://www.cnblogs.com/geneil/archive/2011/12/04/2275272.html 阻塞与非阻塞是设备访问的两种方式.在写阻塞与非阻塞的驱动程序时,经 ...

  6. Linux 3.2中回写机制的变革

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://alanwu.blog.51cto.com/3652632/1109952 wri ...

  7. linux 保留内核中sas驱动的加载导致crash问题

    [root@localhost ~]# uname -a Linux localhost.localdomain -.el7.x86_64 问题描述,在crash的时候,小内核因为分配中断号失败而触发 ...

  8. 详解Linux2.6内核中基于platform机制的驱动模型 (经典)

    [摘要]本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型.首先介绍了Platform总线的基本概念,接着介绍了platform device和platform dri ...

  9. 浅析linux内核中的idr机制

    idr在linux内核中指的就是整数ID管理机制,从本质上来说,这就是一种将整数ID号和特定指针关联在一起的机制.这个机制最早是在2003年2月加入内核的,当时是作为POSIX定时器的一个补丁.现在, ...

随机推荐

  1. php的api及登录的权限验证

    类,库,接口(APi),函数,这些概念都是根据问题规模的大小来界定的.一个很小的问题肯定没有必要写成一个库,只需要写几句话就行了. 但是比如一个登录验证,这个功能很强大,很通用,可能前台后台都需要用到 ...

  2. Linux进程管理:后台启动进程和任务管理命令

    一.为什么要使程序在后台执行 我们的应用有时候要运行时间很长,如:几个小时甚至几个星期,我们可以让程序在后台一直跑. 让程序在后台运行的好处有: 终端关机不影响后台进程的运行.(不会终端一关机或者网络 ...

  3. shuffle和sort分析

    MapReduce中的Shuffle和Sort分析 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的 ...

  4. 阿里云API网关(1)服务网关的产品概述

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  5. apigw鉴权分析(1-1)阿里数加 - 鉴权方式分析

    一.访问方式 1.访问阿里云首页 https://www.aliyun.com/?utm_medium=text&utm_source=bdbrand&utm_campaign=bdb ...

  6. 证明二叉查找树所有节点的平均深度为O(logN)

    数据结构与算法分析(c语言描述)第4章 P78 概念一:一棵树所有节点的深度和称为内部路径长 令D(N)为一棵有N节点的树的内部路径长么,即有D(1)=0, 设一棵树的左子树的内部路径长为D(i),则 ...

  7. linux添加硬盘分区挂载教程

    基本步骤:分区--格式化--挂载--写入文件 1.首先用fdisk -l命令查看添加的硬盘名称,可以看到sdb为新增的硬盘 [root@oracle ~]# fdisk -l Disk /dev/sd ...

  8. Java-NIO(七):阻塞IO与非阻塞IO

    阻塞IO 传统的 IO 流都是阻塞式的. 也就是说,当一个线程调用 read() 或 write()时,该线程被阻塞,直到有一些数据被读取或写入,该线程在此期间不能执行其他任务. 因此,在完成网络通信 ...

  9. 南阳OJ-91-阶乘之和---二进制枚举(入门)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=91 题目大意: 给你一个非负数整数n,判断n是不是一些数(这些数不允许重复使用,且为 ...

  10. IT智力面试题

    ◆ 有一个长方形蛋糕,切掉了长方形的一块(大小和位置随意),你怎样才能直直的一刀下去,将剩下的蛋糕切成大小相等的两块? 答案:将完整的蛋糕的中心与被切掉的那块蛋糕的中心连成一条线.这个方法也适用于立方 ...